Prediction of Oral Absorption of Nanoparticles from Biorelevant Matrices Using a Combination of Physiologically Relevant In Vitro and Ex Vivo Models (original) (raw)

Models for oral uptake of nanoparticles in consumer products

Toxicology, 2012

Presently, many consumer products contain nano-sized materials (NMs) to improve material properties, product quality and ease of use. NMs in food additives and in cosmetic articles (e.g., tooth paste) may be taken up by the oral route. As adverse effects of environmental nanoparticles, like ultrafine particles, have been reported, consumers worry about potential risks when using products containing NMs. The review focuses on metal and metal oxide NMs as common additives in tooth paste and in food industry and exposure by the oral route. Testing of NMs for oral exposure is very complex because differences in the diet, in mucus secretion and composition, in pH, in gastrointestinal transit time and in gastrointestinal flora influence NM uptake. Acellular (mucus, saliva) and epithelial layer of the orogastrointestinal barrier are described. Expected exposure doses, interaction of the NMs with mucus and permeation through the epithelium as well as in vivo data are mentioned. The role of in vitro models for the study of parameters relevant for ingested NMs is discussed.

Measurement Methods for the Oral Uptake of Engineered Nanomaterials from Human Dietary Sources: Summary and Outlook

Comprehensive Reviews in Food Science and Food Safety, 2014

This article is one of a series of 4 that report on a task of the NanoRelease Food Additive (NRFA) project of the International. Life Science Institute Center for Risk Science Innovation and Application. The project aims are to identify, evaluate, and develop methods that are needed to confidently detect, characterize, and quantify intentionally produced engineered nanomaterials (ENMs) released from food along the alimentary tract. This particular article offers an overview of the NRFA project, describing the project scope and goals, as well as the strategy by which the task group sought to achieve these goals. A condensed description of the general challenge of detecting ENMs in foods and a brief review of available and emerging methods for ENM detection is provided here, paying particular attention to the kind of information that might be desired from an analysis and the strengths and weaknesses of the various approaches that might be used to attain this information. The article concludes with an executive summary of the task group's broad findings related to the 3 topic areas, which are covered in more detail in 3 subsequent articles in this series. The end result is a thorough evaluation of the state of ENM measurement science specifically as it applies to oral uptake of ENMs from human dietary sources.

Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity

Food Engineering Reviews, 2015

The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures' potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.

Engineered Nanoscale Food Ingredients: Evaluation of Current Knowledge on Material Characteristics Relevant to Uptake from the Gastrointestinal Tract

Comprehensive Reviews in Food Science and Food Safety, 2014

The NanoRelease Food Additive project developed a catalog to identify potential engineered nanomaterials (ENMs) used as ingredients, using various food-related databases. To avoid ongoing debate on defining the term nanomaterial, NanoRelease did not use any specific definition other than the ingredient is not naturally part of the food chain, and its dimensions are measured in the nanoscale. Potential nanomaterials were categorized based on physical similarity; analysis indicated that the range of ENMs declared as being in the food chain was limited. Much of the catalog's information was obtained from product labeling, likely resulting in both underreporting (inconsistent or absent requirements for labeling) and/or overreporting (inability to validate entries, or the term nano was used, although no ENM material was present). Three categories of ingredients were identified: emulsions, dispersions, and their watersoluble powdered preparations (including lipid-based structures); solid encapsulates (solid structures containing an active material); and metallic or other inorganic particles. Although much is known regarding the physical/chemical properties for these ingredient categories, it is critical to understand whether these properties undergo changes following their interaction with food matrices during preparation and storage. It is also important to determine whether free ENMs are likely to be present within the gastrointestinal tract and whether uptake of ENMs may occur in their nanoform physical state. A practical decision-making scheme was developed to help manage testing requirements.

Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion

Nanomaterials

The risk assessment of ingested nanomaterials (NMs) is an important issue. Here we present nine integrated approaches to testing and assessment (IATAs) to group ingested NMs following predefined hypotheses. The IATAs are structured as decision trees and tiered testing strategies for each decision node to support a grouping decision. Implications (e.g., regulatory or precautionary) per group are indicated. IATAs integrate information on durability and biopersistence (dissolution kinetics) to specific hazard endpoints, e.g., inflammation and genotoxicity, which are possibly indicative of toxicity. Based on IATAs, groups of similar nanoforms (NFs) of a NM can be formed, such as very slow dissolving, highly biopersistent and systemically toxic NFs. Reference NMs (ZnO, SiO2 and TiO2) along with related NFs are applied as case studies to testing the oral IATAs. Results based on the Tier 1 level suggest a hierarchy of biodurability and biopersistence of TiO2 > SiO2 > ZnO, and are con...

Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

Journal of Nanoparticle Research, 2015

The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 lg/g tissue), heart (52.8 lg/g tissue), stomach wall (98.3 lg/g tissue) and small intestinal wall (94.4 lg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6-12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment.

An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials

Particle and fibre toxicology, 2017

Engineered nanomaterials (ENMs) are increasingly added to foods to improve their quality, sensory appeal, safety and shelf-life. Human exposure to these ingested ENMs (iENMS) is inevitable, yet little is known of their hazards. To assess potential hazards, efficient in vitro methodologies are needed to evaluate particle biokinetics and toxicity. These methodologies must account for interactions and transformations of iENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Here we report the development and application of an integrated methodology consisting of three interconnected stages: 1) assessment of iENM-food interactions (food matrix effect) using model foods; 2) assessment of gastrointestinal transformations of the nano-enabled model foods using a three-stage GIT simulator; 3) assessment of iENMs biokinetics and cellular toxicity after exposure to simulated GIT conditions using a triculture cell model. As...