Pollen flow between herbicide-resistantBrassica napusis the cause of multiple-resistantB. napusvolunteers1 (original) (raw)

Gene flow from glyphosate-resistant crops

Pest Management Science, 2008

Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health.

Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism inAmaranthusspecies

Evolutionary Applications, 2011

A previously unknown glyphosate resistance mechanism, amplification of the 5-enolpyruvyl shikimate-3-phosphate synthase gene, was recently reported in Amaranthus palmeri. This evolved mechanism could introgress to other weedy Amaranthus species through interspecific hybridization, representing an avenue for acquisition of a novel adaptive trait. The objective of this study was to evaluate the potential for this glyphosate resistance trait to transfer via pollen from A. palmeri to five other weedy Amaranthus species (Amaranthus hybridus, Amaranthus powellii, Amaranthus retroflexus, Amaranthus spinosus, and Amaranthus tuberculatus). Field and greenhouse crosses were conducted using glyphosateresistant male A. palmeri as pollen donors and the other Amaranthus species as pollen recipients. Hybridization between A. palmeri and A. spinosus occurred with frequencies in the field studies ranging from <0.01% to 0.4%, and 1.4% in greenhouse crosses. A majority of the A. spinosus • A. palmeri hybrids grown to flowering were monoecious and produced viable seed. Hybridization occurred in the field study between A. palmeri and A. tuberculatus (<0.2%), and between A. palmeri and A. hybridus (<0.01%). This is the first documentation of hybridization between A. palmeri and both A. spinosus and A. hybridus.

Evolution and spread of glyphosate resistance inConyza canadensisinCalifornia

Evolutionary Applications, 2013

Recent increases in glyphosate use in perennial crops of California, USA, are hypothesized to have led to an increase in selection and evolution of resistance to the herbicide in Conyza canadensis populations. To gain insight into the evolutionary origins and spread of resistance and to inform glyphosate resistance management strategies, we investigated the geographical distribution of glyphosate resistance in C. canadensis across and surrounding the Central Valley, its spatial relationship to groundwater protection areas (GWPA), and the genetic diversity and population structure and history using microsatellite markers. Frequencies of resistant individuals in 42 sampled populations were positively correlated with the size of GWPA within counties. Analyses of population genetic structure also supported spread of resistance in these areas. Bayesian clustering and approximate Bayesian computation (ABC) analyses revealed multiple independent origins of resistance within the Central Valley. Based on parameter estimation in the ABC analyses, resistant genotypes underwent expansion after glyphosate use began in agriculture, but many years before it was detected. Thus, diversity in weed control practices prior to herbicide regulation in GWPA probably kept resistance frequencies low. Regionally coordinated efforts to reduce seed dispersal and selection pressure are needed to manage glyphosate resistance in C. canadensis.

Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses

Heredity, 2009

The majority of the documented cases of field-evolved herbicide-resistant weed biotypes established that single major genes confer glyphosate resistance. However, the contribution of minor genes endowing substantial plant survival at sublethal herbicide doses may be a potential complementary path to herbicide resistance evolution in weed populations under selection. Here, we subjected a number of susceptible individuals of Lolium rigidum to recurrent glyphosate selection to test the potential for sublethal glyphosate doses to additively select for glyphosate resistance. After 3-4 cycles of glyphosate selection in two distinct environments, the progenies of the initially susceptible population were shifted toward glyphosate resistance. The results indicate progressive enrichment of minor gene trait(s) contributing toward plant survival in the glyphosate-selected progenies. After three generations of selection, the estimated LD 50 values were doubled compared with the original population and up to 33% plant survival was obtained in the glyphosate-selected progeny at the recommended glyphosate label rate. This level of resistance probably was the maximum shift achievable with sublethal glyphosate dose selection in this small population. Cross-pollination was a crucial factor enabling the rapid rate of accumulation of minor glyphosate resistance gene trait(s) that are likely to be present at a relatively high frequency in a small susceptible population. The mechanistic basis of the moderate glyphosate resistance level selected by sublethal glyphosate doses remains unknown and warrants future research. Studying the main factors influencing the evolution of resistant weed populations is crucial for understanding, predicting and managing herbicide resistance.

Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations

European Journal of Agronomy, 2009

Glyphosate-resistant (GR) crops have facilitated increases in conservation tillage production practices and simplified weed control in GR corn, soybean, canola and cotton. Increased reliance on glyphosate, many times as the only active ingredient used, has resulted in weed species shifts and the evolution of weed populations resistant to glyphosate. However, weed shifts and the evolution of herbicide resistance are not new in regard to glyphosate use. Similar effects have been documented to many other historically important weed control advancements for agricultural crop production. GR crop technology was developed to utilize glyphosate for postemergence weed control and industry scientists suggested that there was little fear of weed shifts and resistance evolution due to the broad spectrum of weeds controlled by glyphosate. However, over the last decade, the most problematic weeds in agronomic cropping systems have shifted away from perennial grass and perennial broadleaf weeds to primarily annual broadleaf weeds. The evolution of several GR annual broadleaf weeds in GR cropping systems has been documented, and glyphosate resistance mechanisms in weeds are currently poorly understood.

Occurrence of an herbicide-resistant plant trait in agricultural field margins

Ecology and evolution, 2015

Agricultural environments allow study of evolutionary change in plants. An example of evolution within agroecological systems is the selection for resistance to the herbicide glyphosate within the weed, Conyza canadensis. Changes in survivorship and reproduction associated with the development of glyphosate resistance (GR) may impact fitness and influence the frequency of occurrence of the GR trait. We hypothesized that site characteristics and history would affect the occurrence of GR C. canadensis in field margins. We surveyed GR occurrence in field margins and asked whether there were correlations between GR occurrence and location, crop rotation, GR crop trait rotation, crop type, use of tillage, and the diversity of herbicides used. In a field experiment, we hypothesized that there would be no difference in fitness between GR and glyphosate-susceptible (GS) plants. We asked whether there were differences in survivorship, phenology, reproduction, and herbivory between 2 GR and 2...

Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes

Scientific reports, 2017

Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyp...

Costs of transgenic herbicide resistance introgressed fromBrassica napusinto weedyB. rapa

Molecular Ecology, 1999

Wild relatives of genetically engineered crops can acquire transgenic traits such as herbicide resistance via spontaneous cropÐwild hybridization. In agricultural weeds, resistance to herbicides is often a beneficial trait, but little is known about possible costs that could affect the persistence of this trait when herbicides are not used. We tested for costs associated with transgenic resistance to glufosinate when introgressed into weedy Brassica rapa. Crosses were made between transgenic B. napus and wild B. rapa from Denmark. F 1 progeny were backcrossed to B. rapa and BC 1 plants were selected for chromosome numbers similar to B. rapa. Further backcrossing resulted in a BC 2 generation that was hemizygous for herbicide resistance. We quantified the reproductive success of 457 BC 3 progeny representing six full-sib families raised in growth rooms (plants were pollinated by captive bumblebees). Pollen fertility and seed production of BC 3 plants were as great as those of B. rapa raised in the same growth rooms. Segregation for herbicide resistance in BC 3 plants was 1:1 overall, but the frequency of resistant progeny was lower than expected in one family and higher than expected in another. There were no significant differences between transgenic and nontransgenic plants in survival or the number of seeds per plant, indicating that costs associated with the transgene are probably negligible. Results from this growth-chamber study suggest that transgenic resistance to glufosinate is capable of introgressing into populations of B. rapa and persisting, even in the absence of selection due to herbicide application.