Crystallinity Control of the Topological-Insulator Surface Bi85Sb15(012) via Interfacial Engineering for Enhanced Spin-Orbit Torque (original) (raw)

Topological Surface States Originated Spin-Orbit Torques in Bi(2)Se(3)

Physical review letters, 2015

The three dimensional topological insulator bismuth selenide (Bi(2)Se(3)) is expected to possess strong spin-orbit coupling and spin-textured topological surface states and, thus, exhibit a high charge to spin current conversion efficiency. We evaluate spin-orbit torques in Bi(2)Se(3)/Co(40)Fe(40)B(20) devices at different temperatures by spin torque ferromagnetic resonance measurements. As the temperature decreases, the spin-orbit torque ratio increases from ∼0.047 at 300 K to ∼0.42 below 50 K. Moreover, we observe a significant out-of-plane torque at low temperatures. Detailed analysis indicates that the origin of the observed spin-orbit torques is topological surface states in Bi(2)Se(3). Our results suggest that topological insulators with strong spin-orbit coupling could be promising candidates as highly efficient spin current sources for exploring the next generation of spintronic applications.

Room Temperature Spin Pumping in Topological Insulator Bi2Se3

Three-dimensional (3D) topological insulators are known for their strong spin-orbit coupling and the existence of spin-textured topological surface states which could be potentially exploited for spintronics. Here, we investigate spin pumping from a metallic ferromagnet (CoFeB) into a 3D topological insulator (Bi 2 Se 3) and demonstrate successful spin injection from CoFeB into Bi 2 Se 3 and the direct detection of the electromotive force generated by the inverse spin Hal effect (ISHE) at room temperature. The spin pumping, driven by the magnetization dynamics of the metallic ferromagnet, introduces a spin current into the topological insulator layer, resulting in a broadening of the ferromagnetic resonance (FMR) linewidth. We find that the FMR linewidth more than quintuples, the spin mixing conductance can be as large as 3.4×10 20 m-2 and the spin Hall angle can be as large as 0.23 in the Bi 2 Se 3 layer.

Enhancement of spin-to-charge conversion efficiency in topological insulators by interface engineering

APL Materials, 2021

Topological insulator (TI) based heterostructure is a prospective candidate for ultrahigh spin-to-charge conversion efficiency due to its unique surface states. We investigate the spin-to-charge conversion in (Bi,Sb)2Te3 (BST)/CoFeB, BST/Ru/CoFeB, and BST/Ti/CoFeB by spin pumping measurement. We find that the inverse Edelstein effect length (λIEE) increases by 60% with a Ru insertion while remains constant with a Ti insertion. This can be potentially explained by the protection of BST surface states due to the high electronegativity of Ru. Such enhancement is independent of the insertion layer thickness once the thickness of Ru is larger than 0.5 nm, and this result suggests that λIEE is very sensitive to the TI interface. In addition, an effectively perpendicular magnetic anisotropy field and additional magnetic damping are observed in the BST/CoFeB sample, which comes from the interfacial spin–orbit coupling between the BST and the CoFeB. Our work provides a method to enhance λIEE...

Spin orbitronics at a topological insulator-semiconductor interface

Physical Review B, 2020

Topological insulators (TIs) hold great promises for new spin-related phenomena and applications thanks to the spin texture of their surface states. However, a versatile platform allowing for the exploitation of these assets is still lacking due to the difficult integration of these materials with the mainstream Si-based technology. Here, we exploit germanium as a substrate for the growth of Bi2Se3, a prototypical TI. We probe the spin properties of the Bi2Se3/Ge pristine interface by investigating the spin-to-charge conversion taking place in the interface states by means of a nonlocal detection method. The spin population is generated by optical orientation in Ge, and diffuses towards the Bi2Se3 which acts as a spin detector. We compare the spin-to-charge conversion in Bi2Se3/Ge with the one taking place in Pt in the same experimental conditions. Notably, the sign of the spin-to-charge conversion given by the TI detector is reversed compared to the Pt one, while the efficiency is comparable. By exploiting first-principles calculations, we ascribe the sign reversal to the hybridization of the topological surface states of Bi2Se3 with the Ge bands. These results pave the way for the implementation of highly efficient spin detection in TI-based architectures compatible with semiconductor-based platforms.

Electrical detection of spin-polarized surface states conduction in (Bi(0.53)Sb(0.47))2Te3 topological insulator

Nano letters, 2014

Strong spin-orbit interaction and time-reversal symmetry in topological insulators enable the spin-momentum locking for the helical surface states. To date, however, there has been little report of direct electrical spin injection/detection in topological insulator. In this Letter, we report the electrical detection of spin-polarized surface states conduction using a Co/Al2O3 ferromagnetic tunneling contact in which the compound topological insulator (Bi0.53Sb0.47)2Te3 was used to achieve low bulk carrier density. Resistance (voltage) hysteresis with the amplitude up to about 10 Ω was observed when sweeping the magnetic field to change the relative orientation between the Co electrode magnetization and the spin polarization of surface states. The two resistance states were reversible by changing the electric current direction, affirming the spin-momentum locking in the topological surface states. Angle-dependent measurement was also performed to further confirm that the abrupt chang...

Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi(1.5)Sb(0.5)Te(1.7)Se(1.3)

Nano letters, 2014

We detected the spin polarization due to charge flow in the spin nondegenerate surface state of a three-dimensional topological insulator by means of an all-electrical method. The charge current in the bulk-insulating topological insulator Bi1.5Sb0.5Te1.7Se1.3 (BSTS) was injected/extracted through a ferromagnetic electrode made of Ni80Fe20, and an unusual current-direction-dependent magnetoresistance gave evidence for the appearance of spin polarization, which leads to a spin-dependent resistance at the BSTS/Ni80Fe20 interface. In contrast, our control experiment on Bi2Se3 gave null result. These observations demonstrate the importance of the Fermi-level control for the electrical detection of the spin polarization in topological insulators.

Effect of surface state hybridization on current-induced spin-orbit torque in thin topological insulator films

Scientific reports, 2017

We investigate the thickness optimization for maximum current-induced spin-orbit torque (SOT) generated by topological surface states (TSS's) in a bilayer system comprising of a ferromagnetic layer coupled to a thin topological insulator (TI) film. We show that by reducing the TI thickness, two competing effects on the SOT are induced: (i) the torque strength is stronger as the bulk contribution is decreased; (ii) on the other hand, the torque strength becomes suppressed due to increasing hybridization of the surface states. The latter is attributed to the opposite helicities of the coupled TSS's. We theoretically model the interplay of these two effects and derive the optimal TI thickness to maximize the spin torque, which is estimated to be about 3-5 nm for typical Bi2Se3 films.

Topological Surface States with Persistent High Spin Polarization across the Dirac Point in Bi2Te2Se and Bi2Se2Te

Physical Review Letters, 2012

Helical spin textures with marked spin polarizations of topological surface states have been unveiled for the first time by state-of-the-art spin-and angle-resolved photoemission spectroscopy for two promising topological insulators, Bi 2 Te 2 Se and Bi 2 Se 2 Te. Their highly spin-polarized natures are found to be persistent across the Dirac point in both compounds. This novel finding paves a pathway to extending the utilization of topological surface states of these compounds for future spintronic applications.

Spintronics Based on Topological Insulators

SPIN, 2016

Spintronics using topological insulators (TIs) as strong spin–orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin–orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin–torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its poten...

Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques

Nature communications, 2017

Topological insulators with spin-momentum-locked topological surface states are expected to exhibit a giant spin-orbit torque in the topological insulator/ferromagnet systems. To date, the topological insulator spin-orbit torque-driven magnetization switching is solely reported in a Cr-doped topological insulator at 1.9 K. Here we directly show giant spin-orbit torque-driven magnetization switching in a Bi2Se3/NiFe heterostructure at room temperature captured using a magneto-optic Kerr effect microscope. We identify a large charge-to-spin conversion efficiency of ~1-1.75 in the thin Bi2Se3 films, where the topological surface states are dominant. In addition, we find the current density required for the magnetization switching is extremely low, ~6 × 10(5) A cm(-2), which is one to two orders of magnitude smaller than that with heavy metals. Our demonstration of room temperature magnetization switching of a conventional 3d ferromagnet using Bi2Se3 may lead to potential innovations in...