Silicon Nanostructures for Molecular Sensing: A Review (original) (raw)

This review presents a comprehensive synopsis of the recent developments and achievements in the research of nanosensors composed of plasmonic nanoparticles (NPs) and silicon nanostructures (NSs) for effective trace-level molecular detection. This review focuses intensively on the methodologies for the preparation and enforcement of a variety of SiNSs including (a) metal nanoparticles decorated silicon nanowires (NWs), (b) metal nanodendrites (NDs) on Si substrate, (c) plasmonic NPs decorated nanocrystalline porous silicon (pSi), and (d) silicon composed hybrid nanostructures with favorable parameters of importance in sensing. Furthermore, their potency in wide molecular sensing applications, especially chemical, biological, and explosive molecules based on surface enhanced Raman scattering (SERS) phenomenon is discussed in detail. Various demonstrations and categorizations are provided on the topic of Si-based NSs for a clear understanding to diverse readers. A roadmap is also provided at the end for achieving superior sensing materials or devices in the future.