Spatially resolved spectral phase interferometry with an isolated attosecond pulse (original) (raw)

Electronic wavefunctions probed by all-optical attosecond interferometry

Nature Photonics

Photoelectron spectroscopy is a powerful method that provides insight into the quantum mechanical properties of a wide range of systems. The ionized electron wavefunction carries information on the structure of the bound orbital, the ionic potential as well as the photo-ionization dynamics itself. While photoelectron spectroscopy resolves the absolute amplitude of the wavefunction, retrieving the spectral phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photoionization-photo-recombination-in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. In addition, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle, along with phase signatures of multi-electron effects. Our study bears the prospect of probing complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.

Full Bandwidth Measurement of Supercontinuum Spectral Phase Coherence in Long Pulse Regime

Fiber and Integrated Optics, 2015

This article reports that spectral phase coherence in the supercontinuum in long pulse regime can be measured simply and effectively by using an interference technique with the help of a Mach-Zehnder interferometer. It is also demonstrated that chromatic dispersion on the fringe visibility of interference spectral patterns is overcome in the setup. The technique is applied to characterize supercontinuum spectral phase coherence in a highly non-linear optical fiber with different input conditions: unseeded, coherent seeded, and incoherent seeded picosecond pumps. The results confirm the phase coherence characteristic predicted theoretically in previous studies.

Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses

Nature Communications

The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.

Direct measurement of spectral phase for ultrashort laser pulses

Optics Express, 2008

We present an intuitive pulse characterization method that provides an accurate and direct measurement of the spectral phase of ultrashort laser pulses. The method requires the successive imposition of a set of quadratic spectral phase functions on the pulses while recording the corresponding nonlinear spectra. The second-derivative of the unknown spectral phase can be directly visualized and extracted from the experimental 2D contour plot, without any inversion algorithm or mathematical manipulation.

Ultrafast insulator-to-metal phase transition as a switch to measure the spectrogram of a supercontinuum light pulse

Applied Physics Letters, 2010

In this letter we demonstrate the possibility to determine the temporal and spectral structure (spectrogram) of a complex light pulse exploiting the ultrafast switching character of a non-thermal photo-induced phase transition. As a proof, we use a VO2 multi-film, undergoing an ultrafast insulator-to-metal phase transition when excited by femtosecond near-infrared laser pulses. The abrupt variation of the multi-film optical properties, over a broad infrared/visible frequency range, is exploited to determine, in-situ and in a simple way, the spectrogram of a supercontinuum pulse produced by a photonic crystal fiber. The determination of the structure of the pulse is mandatory to develop new pump-probe experiments with frequency resolution over a broad spectral range (700-1100 nm).

Benchmarking accurate spectral phase retrieval of single attosecond pulses

Physical Review A, 2015

A single extreme-ultraviolet (XUV) attosecond pulse or pulse train in the time domain is fully characterized if its spectral amplitude and phase are both determined. The spectral amplitude can be easily obtained from photoionization of simple atoms where accurate photoionization cross sections have been measured from, e.g., synchrotron radiations. To determine the spectral phase, at present the standard method is to carry out XUV photoionization in the presence of a dressing infrared (IR) laser. In this work, we examine the accuracy of current phase retrieval methods (PROOF and iPROOF) where the dressing IR is relatively weak such that photoelectron spectra can be accurately calculated by second-order perturbation theory. We suggest a modified method named swPROOF (scattering wave phase retrieval by omega oscillation filtering) which utilizes accurate one-photon and two-photon dipole transition matrix elements and removes the approximations made in PROOF and iPROOF. We show that the swPROOF method can in general retrieve accurate spectral phase compared to other simpler models that have been suggested. We benchmark the accuracy of these phase retrieval methods through simulating the spectrogram by solving the time-dependent Schrödinger equation numerically using several known single attosecond pulses with a fixed spectral amplitude but different spectral phases.

Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction

Optics Letters, 2003

We describe a method of characterizing ultrashort optical pulses that is based on the technique of spectral phase interferometry for direct electric-field reconstruction and is capable of simultaneously measuring the amplitude and the phase of the electric field of a sub-10-fs pulse at kilohertz acquisition rates on a single-shot basis. Use of this technique results in a dramatic increase (.503) in acquisition rate compared with that of existing diagnostics for full E-field characterization and opens the door to a range of new experiments in which shot-to-shot phase and amplitude f luctuations are studied at kilohertz rates.

Simplified single-shot supercontinuum spectral interferometry

Optics Express, 2020

We have experimentally demonstrated a simplified method for performing single-shot supercontinuum spectral interferometry (SSSI) that does not require pre-characterization of the probe pulse. The method, originally proposed by D. T. Vu, D. Jang, and K. Y. Kim, uses a genetic algorithm (GA) and as few as two time-delayed pump-probe shots to retrieve the pump-induced phase shift on the probe [Opt. Express 26, 20572 (2018)]. We show that the GA is able to successfully retrieve the transient modulations on the probe, and that the error in the retrieved modulation decreases dramatically with the number of shots used. In addition, we propose and demonstrate a practical method that allows SSSI to be done with a single pump-probe shot (again, without the need for pre-characterization of the probe). This simplified method can prove to be immensely useful when performing SSSI with a low-repetition-rate laser source.

Vectorial Phase Retrieval for Linear Characterization of Attosecond Pulses

Physical Review Letters, 2011

The waveforms of attosecond pulses produced by high-harmonic generation carry information on the electronic structure and dynamics in atomic and molecular systems. Current methods for the temporal characterization of such pulses have limited sensitivity and impose significant experimental complexity. We propose a new linear and all-optical method inspired by widely used multidimensional phase retrieval algorithms. Our new scheme is based on the spectral measurement of two attosecond sources and their interference. As an example, we focus on the case of spectral polarization measurements of attosecond pulses, relying on their most fundamental property—being well confined in time. We demonstrate this method numerically by reconstructing the temporal profiles of attosecond pulses generated from aligned CO2 molecules.