Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies (original) (raw)

Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy

Brain, 2019

Charcot-Marie-Tooth disease type 4C is the most common recessively inherited demyelinating neuropathy that results from loss of function mutations in the SH3TC2 gene. Sh3tc2 À/À mice represent a well characterized disease model developing early onset progressive peripheral neuropathy with hypo-and demyelination, slowing of nerve conduction velocities and disturbed nodal architecture. The aim of this project was to develop a gene replacement therapy for treating Charcot-Marie-Tooth disease type 4C to rescue the phenotype of the Sh3tc2 À/À mouse model. We generated a lentiviral vector LV-Mpz.SH3TC2.myc to drive expression of the human SH3TC2 cDNA under the control of the Mpz promoter specifically in myelinating Schwann cells. The vector was delivered into 3-week-old Sh3tc2 À/À mice by lumbar intrathecal injection and gene expression was assessed 4-8 weeks after injection. Immunofluorescence analysis showed presence of myc-tagged human SH3TC2 in sciatic nerves and lumbar roots in the perinuclear cytoplasm of a subset of Schwann cells, in a dotted pattern co-localizing with physiologically interacting protein Rab11. Quantitative PCR analysis confirmed SH3TC2 mRNA expression in different peripheral nervous system tissues. A treatment trial was initiated in 3 weeks old randomized Sh3tc2 À/À littermate mice which received either the full or mock (LV-Mpz.Egfp) vector. Behavioural analysis 8 weeks after injection showed improved motor performance in rotarod and foot grip tests in treated Sh3tc2 À/À mice compared to mock vector-treated animals. Moreover, motor nerve conduction velocities were increased in treated Sh3tc2 À/À mice. On a structural level, morphological analysis revealed significant improvement in g-ratios, myelin thickness, and ratios of demyelinated fibres in lumbar roots and sciatic nerves of treated Sh3tc2 À/À mice. Finally, treated mice also showed improved nodal molecular architecture and reduction of blood neurofilament light levels, a clinically relevant biomarker for axonal injury/degeneration. This study provides a proof of principle for viral gene replacement therapy targeted to Schwann cells to treat Charcot-Marie-Tooth disease type 4C and potentially other similar demyelinating inherited neuropathies.

Therapeutic strategies for the inherited neuropathies

NeuroMolecular Medicine, 2006

More than 30 genetic causes have been identified for the inherited neuropathies collectively referred to as Charcot-Marie-Tooth (CMT) disease. Previous therapies for CMT were limited to traditional approaches such as rehabilitation medicine, ambulation aids, and pain management. Identification of the genes causing CMT has led to improved genetic counseling and assistance in family planning. Identification of these genes is beginning to delineate common molecular pathways in multiple forms of CMT that can be exploited in future molecular therapies. Scientifically based clinical trials for CMT are currently being implemented. Techniques of gene therapy are advancing to the point that they may become feasible options for patients with CMT and other neurodegenerative diseases.

Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases

Brain Research, 2019

Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.

Charcot-Marie-Tooth disease: Emerging mechanisms and therapies

The International Journal of Biochemistry & Cell Biology, 2012

Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system. The disease is characterized by a progressive muscle weakness and atrophy, sensory loss, foot (and hand) deformities and steppage gait. While many of the genes associated with axonal CMT have been identified, to date it is unknown which mechanism(s) causes the disease. However, genetic findings indicate that the underlying mechanisms mainly converge to the axonal cytoskeleton. In this review, we will summarize the evidence for this pathogenic convergence. Furthermore, recent work with new transgenic mouse models has led to the identification of histone deacetylase 6 as a potential therapeutic target for inherited peripheral neuropathies. This enzyme deacetylates microtubules and plays a crucial role in the regulation of axonal transport. These findings offer new perspectives for a potential therapy to treat axonal Charcot-Marie-Tooth disease and other neurodegenerative disorders characterized by axonal transport defects.

Recommendations to enable drug development for inherited neuropathies: Charcot-Marie-Tooth and Giant Axonal Neuropathy

F1000Research, 2014

Approximately 1 in 2500 Americans suffer from Charcot-Marie-Tooth (CMT) disease. The underlying disease mechanisms are unique in most forms of CMT, with many point mutations on various genes causing a toxic accumulation of misfolded proteins. Symptoms of the disease often present within the first two decades of life, with CMT1A patients having reduced compound muscle and sensory action potentials, slow nerve conduction velocities, sensory loss, progressive distal weakness, foot and hand deformities, decreased reflexes, bilateral foot drop and about 5% become wheelchair bound. In contrast, the ultra-rare disease Giant Axonal Neuropathy (GAN) is frequently described as a recessively inherited condition that results in progressive nerve death. GAN usually appears in early childhood and progresses slowly as neuronal injury becomes more severe and leads to death in the second or third decade. There are currently no treatments for any of the forms of CMTs or GAN. We suggest that further clinical studies should analyse electrical impedance myography as an outcome measure for CMT. Further, additional quality of life (QoL) assessments for these CMTs are required, and we need to identify GAN biomarkers as well as develop new genetic testing panels for both diseases. We propose that using the Global Registry of could be useful for many of these studies. Patient Inherited Neuropathy (GRIN) advocacy groups and professional organizations (such as the Hereditary Neuropathy Foundation (HNF), Hannah's Hope Fund (HHF), The Neuropathy Association (TNA) and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM) can play a central role in educating clinicians and patients. Undertaking these studies will assist in the correct diagnosis of disease recruiting patients for clinical studies, and will ultimately improve the endpoints for clinical trials. By addressing obstacles that prevent industry investment in various forms of inherited neuropathies, we can envision treatment options for these rare diseases in the near future.

Charcot-Marie-Tooth Disease: A Clinico-genetic Confrontation

Annals of Human Genetics, 2008

Charcot-Marie-Tooth disease (CMT) is the most common neuromuscular disorder. It represents a group of clinically and genetically heterogeneous inherited neuropathies. Here, we review the results of molecular genetic investigations and the clinical and neurophysiological features of the different CMT subtypes. The products of genes associated with CMT phenotypes are important for the neuronal structure maintenance, axonal transport, nerve signal transduction and functions related to the cellular integrity. Identifying the molecular basis of CMT and studying the relevant genes and their functions is important to understand the pathophysiological mechanisms of these neurodegenerative disorders, and the processes involved in the normal development and function of the peripheral nervous system. The results of molecular genetic investigations have impact on the appropriate diagnosis, genetic counselling and possible new therapeutic options for CMT patients.

Charcot-Marie-Tooth disease type 1: Molecular pathogenesis to gene therapy

Brain, 2000

Charcot-Marie-Tooth disease type 1 (CMT1) is caused by mutations in the peripheral myelin protein, 22 kDa (PMP22) gene, protein zero (P0) gene, early growth response gene 2 (EGR-2) and connexin-32 gene, which are expressed in Schwann cells, the myelinating cells of the peripheral nervous system. Although the clinical and pathological phenotypes of the various forms of CMT1 are similar, including distal muscle weakness and sensory Abbreviations: AVR ϭ adenoviral vectors; BiP/GRP78 ϭ growth related protein, 78 kDa; CMT ϭ Charcot-Marie-Tooth disease; EGR-2 ϭ early growth response gene 2; MAG ϭ myelin associated glycoprotein; MBP ϭ myelin basic protein; PMP22 ϭ peripheral myelin protein (22 kDa); P0 ϭ protein zero

Update on Charcot-Marie-Tooth Disease

Current Neurology and Neuroscience Reports, 2010

Charcot-Marie-Tooth disease (CMT) disease encompasses a genetically heterogeneous group of inherited neuropathies, also known as hereditary motor and sensory neuropathies. CMT results from mutations in more than 40 genes expressed in Schwann cells and neurons causing overlapping phenotypes. The classic CMT phenotype reflects length-dependent axonal degeneration characterized by distal sensory loss and weakness, deep tendon reflex abnormalities, and skeletal deformities. Recent articles have provided insight into the molecular pathogenesis of CMT, which, for the first time, suggest potential therapeutic targets. Although there are currently no effective medications for CMT, multiple clinical trials are ongoing or being planned. This review will focus on the underlying pathomechanisms and diagnostic approaches of CMT and discuss the emerging therapeutic strategies.

Therapeutic Development in Charcot Marie Tooth Type 1 Disease

International Journal of Molecular Sciences, 2021

Charcot–Marie–Tooth disease (CMT) is the most frequent hereditary peripheral neuropathies. It is subdivided in two main groups, demyelinating (CMT1) and axonal (CMT2). CMT1 forms are the most frequent. The goal of this review is to present published data on 1—cellular and animal models having opened new potential therapeutic approaches. 2—exploration of these tracks, including clinical trials. The first conclusion is the great increase of publications on CMT1 subtypes since 2000. We discussed two points that should be considered in the therapeutic development toward a regulatory-approved therapy to be proposed to patients. The first point concerns long term safety if treatments will be a long-term process. The second point relates to the evaluation of treatment efficiency. Degradation of CMT clinical phenotype is not linear and progressive.

Reversal of neuropathy phenotypes in conditional mouse model of Charcot-Marie-Tooth disease type 2E

Human Molecular Genetics, 2010

Mutations in the gene encoding for the neurofilament light subunit (NF-L) are responsible for Charcot -Marie -Tooth (CMT) neuropathy type 2E. To address whether CMT2E disease is potentially reversible, we generated a mouse model with conditional doxycycline-responsive gene system that allows repression of mutant hNF-L P22S transgene expression in adult neurons. The hNF-L P22S ;tTa transgenic (tg) mice recapitulated key features of CMT2E disease, including aberrant hindlimb posture, motor deficits, hypertrophy of muscle fibres and loss of muscle innervation without neuronal loss. Remarkably, a 3-month treatment of hNF-L P22S ;tTa mice with doxycycline after onset of disease efficiently down-regulated expression of hNF-L P22S and it caused reversal of CMT neurological phenotypes with restoration of muscle innervation and of neurofilament protein distribution along the sciatic nerve. These data suggest that therapeutic approaches aimed at abolishing expression or neutralizing hNF-L mutants might not only halt the progress of CMT2E disease, but also revert the disabilities.