Development of a New Multi-step Iteration Scheme for Solving Non-Linear Models with Complex Polynomiography (original) (raw)

The appearance of nonlinear equations in science, engineering, economics, and medicine cannot be denied. Solving such equations requires numerical methods having higher-order convergence with cost-effectiveness, for the equations do not have exact solutions. In the pursuit of efficient numerical methods, an attempt is made to devise a modified strategy for approximating the solution of nonlinear models in either scalar or vector versions. Two numerical methods of second-and sixth-order convergence are carefully merged to obtain a hybrid multi-step numerical method with twelfth-order convergence while using seven function evaluations per iteration, resulting in the efficiency index of about 1.4262. The convergence is also ascertained theoretically, and the asymptotic error constant is computed. Furthermore, various numerical methods of varying orders are used to compare the numerical results obtained with the proposed hybrid method in approximate solution, number of iterations, absol...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact