Mechanisms of low susceptibility to the disinfectant benzalkonium chloride in a multidrug-resistant environmental isolate ofAeromonas hydrophila (original) (raw)
Related papers
Microbiology, 2007
Benzalkonium chloride (BC) is a commonly used disinfectant and preservative. This study describes changes in expression level at the transcriptomic and proteomic level for Escherichia coli K-12 gradually adapted to a tolerance level to BC of 7-8 times the initial MIC. Results from DNA arrays and two-dimensional gel electrophoresis for global gene and protein expression studies were confirmed by real-time quantitative PCR. Peptide mass fingerprinting by MALDI-TOF MS was used to identify differentially expressed proteins. Changes in expression level in adapted cells were shown for porins, drug transporters, glycolytic enzymes, ribosomal subunits and several genes and proteins involved in protection against oxidative stress and antibiotics. Adapted strains showed increased tolerance to several antibiotics. In conclusion, E. coli K-12 adapted to higher tolerance to BC acquired several general resistance mechanisms, including responses normally related to the multiple antibiotic resistance (Mar) regulon and protection against oxidative stress. The results revealed that BC treatment might result in superoxide stress in E. coli.
Applied and …, 2007
Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.
Antimicrobial Agents and Chemotherapy, 2003
The adaptation mechanism of Pseudomonas aeruginosa ATCC 10145 to quaternary ammonium compounds (QACs) was investigated. A P. aeruginosa strain with adapted resistance to QACs was developed by a standard broth dilution method. It was revealed that P. aeruginosa exhibited remarkable resistance to N -dodecylpyridinium iodide (P-12), whose structure is similar to that of a common disinfectant, cetylpyridinium chloride. Adapted resistance to benzalkonium chloride (BAC), which is commonly used as a disinfectant, was also observed in P. aeruginosa . Moreover, the P-12-resistant strain exhibited cross-resistance to BAC. Analysis of the outer membrane protein of the P-12-resistant strain by two-dimensional polyacrylamide gel electrophoresis showed a significant increase in the level of expression of a protein (named OprR) whose molecular mass was approximately 26 kDa. The actual function of OprR is not yet clear; however, OprR was expected to be an outer membrane-associated protein with homo...
Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate
2009
Pseudomonas aeruginosa is implicated in nosocomial infections and chronic respiratory infections in cystic fibrosis patients. Chlorhexidine diacetate (CHX) is a biguanide disinfectant used for bacterial control in the hospital and agricultural and domestic environments. A better understanding of the mechanism of action of CHX and the resulting response elicited by P. aeruginosa to CHX will facilitate its effective utilization for P. aeruginosa control in these environments. This study presents, for the first time, the transcriptomic response of P. aeruginosa to 0.008 mM CHX after 10 and 60 min. Our results reveal that, after both treatment times, membrane transport, oxidative phosphorylation, and electron transport genes were downregulated. After 10 min, DNA repair was downregulated and the oprH gene that blocks the self-promoted uptake of antimicrobials was upregulated. After 60 min, outer membrane protein, flagellum, pilus, oxidative phosphorylation, and electron transport genes were downregulated. The mexC and mexD genes of the MexCD-OprJ multidrug efflux pump were significantly upregulated after both treatment times. The results of this study improve our understanding of the mode of action of CHX on P. aeruginosa and provide insights into the mechanism of action of other biguanide disinfectants which can be used for the development of more efficient disinfectants.
Journal of Water and Health, 2021
The continuous introduction of cleaning products containing benzalkonium chloride (BAC) from household discharges can mold the microbial communities in wastewater treatment plants (WWTPs) in a way still poorly understood. In this study, we performed an in vitro exposure of activated sludge from a WWTP in Costa Rica to BAC, quantified the changes in intI1, sul2, and qacE/qacEΔ1 gene profiles, and determined alterations in the bacterial community composition. The analysis of the qPCR data revealed elevated charges of antibiotic resistance genes in the microbial community; after BAC's exposure, a significant increase in the qacE/qacEΔ1 gene, which is related to ammonium quaternary resistance, was observed. The 16S rRNA gene sequences’ analysis showed pronounced variations in the structure of the bacterial communities, including reduction of the alpha diversity values and an increase of the relative abundance of Alphaproteobacteria, particularly of Rhodospseudomonas and Rhodobacter....
Antibiotics
Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the prese...
Microorganisms
Pseudomonas aeruginosa is an opportunistic pathogen displaying high intrinsic antimicrobial resistance and the ability to thrive in different ecological environments. In this study, the ability of P. aeruginosa to develop simultaneous resistance to multiple antibiotics and disinfectants in different natural niches were investigated using strains collected from clinical samples, veterinary samples, and wastewater. The correlation between biocide and antimicrobial resistance was determined by employing principal component analysis. Molecular mechanisms linking biocide and antimicrobial resistance were interrogated by determining gene expression using RT-qPCR and identifying a potential genetic determinant for co- and cross-resistance using whole-genome sequencing. A subpopulation of P. aeruginosa isolates belonging to three sequence types was resistant against the common preservative benzalkonium chloride and showed cross-resistance to fluoroquinolones, cephalosporins, aminoglycosides...
Study of cross-resistance to other antimicrobial agents and efflux pump (EP) resistance mechanism in benzalkonium chloride (BC) adapted Pseudomonas aeruginosa isolates. Minimum inhibitory concentration (MIC) of BC of 88 P. aeruginosa isolates that collected from clinical settings in Egypt and cross-resistance of BC-adapted isolates to other antimicrobial agents were determined by agar dilution method. EP regulatory genes (i.e., MexR, NfxB, MexT, and MexZ) were detected by PCR in BC adapted isolates, and then EP activity of isolates which have these four genes was determined by cartwheel method followed by sequencing for the isolate which showed the highest EP activity. Finally; the expression of EP genes (MexA, MexC, MexE, and MexX) was determined in the same isolate by realtime polymerase chain reaction (RT-PCR) in presence and absence of the most potent efflux pump inhibitor (EPI). Twenty isolates were BC-adapted with MIC 2,048 mg/l, showed cross-resistance to cetrimide and ciprofloxacin but not to other disinfectants used. The isolate no. 87 selected to be sequenced. Mutation founded in MexR (V126E) and MexZ (L138R) genes. By RT-PCR, sertraline (the most potent EPI used) decreased the expression of the EP genes to three-folds. These results demonstrate that EP was the major mechanism of resistance to BC.
Applied and Environmental Microbiology, 2008
In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-TolC for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of diff...