Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment (original) (raw)
Related papers
Hydrobiologia, 2017
Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch-AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch-AgNP were characterized by UV-Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles sundaicus under laboratory and field conditions. Antibacterial properties of Ch-AgNP were tested on Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Proteus vulgaris using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy Carassius auratus in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch-AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch-AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent
Journal of Asia-Pacific Entomology, 2016
Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plantborne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. In this study, we synthesized silver nanoparticles (Ag NPs) using the Clerodendrum chinense leaf extract as reducing and stabilizing agent. The biosynthesis of AgNP was confirmed analyzing the excitation of surface Plasmon resonance using ultraviolet-visible (UV-vis) spectrophotometry. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the clustered and irregular shapes of Ag NP. The presence of silver was determined by energy dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may act as Ag NP capping agents. The acute toxicity of C. chinense leaf extract and biosynthesized Ag NP was evaluated against larvae of Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against A. subpictus, A. albopictus, and C. tritaeniorhynchus with LC 50 values of 10.23, 11.10 and 12.38 μg/mL, respectively. Biosynthesized Ag NPs were found safer to non-target organisms Diplonychus indicus, Anisops bouvieri and Gambusia affinis, with respective LC 50 values ranging from 647.05 to 6877.28 μg/ml. Overall, our results highlight that C. chinense-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against non-target aquatic organisms.
Environmental Science and Pollution Research, 2015
Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this study, silver nanoparticles (AgN) were biosynthesized a cheap aqueous extract of T. asiatica leaves as reducing and stabilizing agent. The formation of nanoparticle was confirmed by surface Plasmon resonance band illustrated in UV-vis spectrophotometer. AgN were characterized by FTIR, SEM, EDX, and XRD analyses. AgN were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 25-30 nm. T. asiatica aqueous extract and green-synthesized AgN showed excellent larvicidal and pupicidal toxicity against the filariasis vector Culex quinqufasciatus, both in laboratory and field experiments. AgN LC 50 ranged from 16.48 (I instar larvae) to 31.83 ppm (pupae). T. asiatica-synthesized were also highly effective in inhibiting growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. Lastly, we evaluated if sublethal doses of nanoparticles affect predation rates of fishes, Poecilia reticulata, against C. quinquefasciatus. In AgN-contaminated environment, predation of guppies against mosquito larvae was slightly higher over normal laboratory conditions. Overall, this study highlighted that T. asiatica-synthesized AgN are easy to produce, stable over time, and may be employed at low dosages to reduce populations of filariasis vectors, without detrimental effects on predation rates of mosquito natural enemies.
Scientific Reports, 2021
Mosquitoes are a great menace for humankind since they transmit pathogenic organisms causing Malaria, Dengue, Chikungunya, Elephantiasis and Japanese encephalitis. There is an urgent need to discover new and novel biological tools to mitigate mosquito-borne diseases. To develop bioinsecticides through newly developed nanotechnology is another option in the present research scenario. In this study we synthesize and characterize sardine fish scales with silver nitrate by adopting various instrumental techniques such as UV- and FTIR-spectroscopy, energy-dispersive X-ray (EDAX), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). Toxicity bioassays were conducted with young developmental stages of mosquito vectors. Significant mortality appeared after different life stages of mosquito vectors (young larval and pupal instars were exposed to the nanomaterials). LC50 values were 13.261 ppm for young first instar larvae and 32.182 ppm for pupae. Feeding and predatory po...
Journal of Cluster Science, 2016
Botanical-based nanosynthesis has been recently reported as a cheap alternative for mosquito management. Screening different botanicals as reducing and capping agents led to the production of metal nanoparticles with different biophysical and mosquitocidal features. Here, Naregamia alata-mediated biosynthesis of silver nanoparticles (AgNPs) was conducted. AgNPs were tested on egg, larval and adult populations of three important mosquito vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. AgNPs were characterized using UV-Vis spectrophotometry, FTIR, AFM, SEM, TEM, EDX, and XRD analyses. Maximum larvicidal toxicity was detected against A. stephensi (LC 50 = 12.40 lg/ml), followed by A. aegypti (LC 50 = 13.57 lg/ml) and C. quinquefasciatus (LC 50 = 14.84 lg/ ml). A single treatment with AgNPs tested at 60, 75 and 90 lg/ml led to no egg hatchability. In adulticidal experiments, the maximum efficacy was observed on A. stephensi (LD 50 = 31.60 lg/ml), followed by A. aegypti (LD 50 = 34.31 lg/ml) and C. quinquefasciatus (LD 50 = 37.52 lg/ml), respectively. AgNPs were safer for three non-target mosquito natural enemies, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC 50 ranging from 629 to 2111 lg/ml. Overall, N. alata-Journal of Cluster Science-Invited Contribution for the Special Issue ''Applications of greensynthesized nanoparticles in pharmacology, parasitology and entomology''.
Vector-Borne and Zoonotic Diseases, 2012
A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO 3 to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC 50 ) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by *30% ( p < 0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% ( p < 0.05).
Parasitology …, 2012
Vector control is a critical requirement in epidemic disease situations, as is an urgent need to develop new and improved mosquito control methods that are economical and effective yet safe for nontarget organisms and the environment. Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, activity of silver nanoparticles (AgNPs) synthesized using Euphorbia hirta (E. hirta) plant leaf extract against malarial vector Anopheles stephensi (A. stephensi) was determined. Range of concentrations of synthesized AgNPs (3.125, 6.25, 12.5, 25, and 50 ppm) and methanol crude extract (50, 100, 150, 200, and 250 ppm) were tested against larvae of A. stephensi. The synthesized AgNPs from E. hirta were highly toxic than methanolic crude extract against malarial vector, A. stephensi. The synthesized AgNPs were characterized by UV-vis spectrum, scanning electron microscopy (SEM), and X-ray diffraction. SEM analyses of the synthesized showed that AgNPs, measuring 30-60 nm in size, were clearly distinguishable. The synthesized AgNPs showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of values LC 50 (10.14, 16.82, 21.51, and 27.89 ppm, respectively), LC 90 (31.98, 50.38, 60.09, and 69.94 ppm, respectively), and the LC 50 and LC 90 values of pupae of 34.52 and 79.76 ppm, respectively. Methanol extract exhibited the larval toxicity against the first to fourth instar larvae and pupae of values LC 50 (121.51, 145.40, 169.11, and 197.40 ppm, respectively), LC 90 (236.44, 293.75, 331.42, and 371.34 ppm, respectively), and the LC 50 and LC 90 values of pupae of 219.15 and 396.70 ppm, respectively. No mortality was observed in the control. These results suggest that synthesized silver nanoparticles are a rapid, eco-friendly, and single-step approach; the AgNPs formed can be potential mosquito larvicidal agents.
2017
This paper mainly focuses on using biopolymer as a potential larvicide. This work initially starts with extracting chitosan from the shrimp waste by a chemical method and it was characterized further. Chitosan is a natural carbohydrate biopolymer derived by deacetylation (DA) of chitin that is nontoxic, biodegradable, and biocompatible. But usually chitosan will not completely dissolved in water at normal conditions. Therefore, to increase the solubility and reaction rate, quaternized derivative of chitosan, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC), is obtained and characterized. It highly dissolves in water and has more positive charge (quaternary ammonium groups) compared with chitosan. Next the larvicidal activity of the obtained HTCC against two mosquito species, Aedes and Culex, is evaluated. Next part of the work continues with synthesizing silver nanoparticles from the plant Euphorbia Antiquorum and characterized by UV Spec, FTIR, and SEM; then the ...
Parasitology Research, 2015
Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm −1. In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC 50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC 50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10×LC 50) lead to A. aegypti larval reduction of 47.6 %, 76.7 % and 100 %, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9 %, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC 50 and LC 90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility
There is an exigent necessity for development of environmental friendly bio-control agent(s) for elimination of mosquito due to increased resistance resurgence against synthetic control agents. Mosquito control strategy will lay a strong foundation to malaria exclusion or it can be curbed to certain level especially in the developing nations. In this study, silver nanoparticles were synthesized by green chemistry approach using Tridax procumbens leaf extract as a reducing agent. The reaction medium involved in the synthesis process was optimized by statistical experimental design using response surface methodology to obtain better yield, uniform size, shape and stability. Further, these synthesized nanoparticles were confirmed through UV–Visible, FT-IR spectroscopy, PSA and SEM Subsequently, the bioefficacy of these particles were investigated on Anopheles stephensi for larvicidal and pupicidal activity. Interestingly, time period of 90 min, temperature of 76 ± 2 C, pH 7.2 ± 2, 2 mM silver nitrate (AgNO ), 3 mM PEG and 2 mM PVP showed excellent parameters for bioprocess design for large scale production of stabilized nanoparticles. A concentration of 5 ppm of PVP stabilized nanoparticles exhibited 100% mortality. Thus, the obtained results clearly suggest that silver nanoparticles stabilized by PEG and PVP may have important function as stabilizers, dispersants as well as larvicides for mosquito control.