Low and high grade glioma segmentation in multispectral brain MRI data (original) (raw)

Abstract

Several hundreds of thousand humans are diagnosed with brain cancer every year, and the majority dies within the next two years. The chances of survival could be easiest improved by early diagnosis. This is why there is a strong need for reliable algorithms that can detect the presence of gliomas in their early stage. While an automatic tumor detection algorithm can support a mass screening system, the precise segmentation of the tumor can assist medical staff at therapy planning and patient monitoring. This paper presents a random forest based procedure trained to segment gliomas in multispectral volumetric MRI records. Beside the four observed features, the proposed solution uses 100 further features extracted via morphological operations and Gabor wavelet filtering. A neighborhood-based post-processing was designed to regularize and improve the output of the classifier. The proposed algorithm was trained and tested separately with the 54 low-grade and 220 high-grade tumor volumes...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (29)

  1. S. B. Akers, Binary decision diagrams, IEEE Trans. Computers C-27, 6 (1978) 509-516. ⇒ 115
  2. A. J. Asman, B. A. Landman, Out-of-atlas labeling: a multi-atlas approach to cancer segmentation, Proc. IEEE International Symposium on Biomedical Imag- ing, Barcelona, Catalunya, 2012, pp. 1236-1239. ⇒ 111
  3. L. Breiman, Random forests, Machine Learning 45, 1 (2001) 5-32. ⇒ 117
  4. J. D. Christensen, Normalization of brain magnetic resonance images using his- togram even-order derivative analysis, Magn. Reson. Imaging 21, 7 (2003) 817- 820. ⇒ 114
  5. S. Ghanavati, J. Li, T. Liu, P. S. Babyn, W. Doda, G. Lampropoulos, Automatic brain tumor detection in magnetic resonance images, Proc. IEEE International Symposium on Biomedical Imaging, Barcelona, Catalunya, 2012, pp. 574-577. ⇒ 111
  6. N. Gordillo, E. Montseny, P. Sobrevilla, State of the art survey on MRI brain tumor segmentation, Magn. Reson. Imaging 31 (2013) 1426-1438. ⇒ 111, 112
  7. A. Hamamci, N. Kucuk, K. Karamam, K. Engin, G. Unal, Tumor-Cut: seg- mentation of brain tumors on contranst enhanced MR images for radiosurgery applications, IEEE Trans. Med. Imaging 31 (2012) 790-804. ⇒ 111
  8. M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P. M. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural networks, Med. Image Anal. 35 (2017) 18-31. ⇒ 112
  9. M. Y. Huang, W. Yang, Y. Wu, J. Jiang, W. F. Chen, Q. J. Feng, Brain tumor segmentation based on local independent projection-based classification, IEEE Trans. Biomed. Eng. 61 (2014) 2633-2645. ⇒ 112
  10. J. E. Iglesias, M. R. Sabuncu, Multi-atlas segmentation of biomedical images: A survey, Med. Image Anal. 24 (2015) 205-219. ⇒ 112
  11. A. Islam, S. M. S. Reza, K. M. Iftekharuddin, Multifractal texture estimation for detection and segmentation of brain tumors, IEEE Trans. Biomed. Eng. 60 (2013) 3204-3215. ⇒ 112
  12. J. Juan-Albarracín, E. Fuster-Garcia, J. V. Manjón, M. Robles, F. Aparici, L. Martí-Bonmatí, J. M. García-Gómez, Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification, PLoS ONE 10 5 (2015) e0125143. ⇒ 112
  13. V. G. Kanas, E. I. Zacharaki, C. Davatzikos, K. N. Sgarbas, V. Mega- looikonomou, A low cost approach for brain tumor segmentation based on in- tensity modeling and 3D random walker, Biomed. Sign. Proc. Control 22 (2015) 19-30. ⇒ 112
  14. Z. Kapás, L. Lefkovits, D. Iclȃnzan, Á. Győrfi, B. L. Iantovics, Sz. Lefkovits, S. M.. Szilágyi, L. Szilágyi, Automatic brain tumor segmentation in multispectral MRI volumes using a random forest approach, Proc. Pacific-Rim Symposium on Image and Video Technology (PSIVT'17), Lecture Notes in Artificial Intelligence 10749 (2018) 137-149. ⇒ 112
  15. M. Lê, H. Delingette, J. Kalpathy-Cramer, E. R. Gerstner, T. Batchelor, J. Unkelbach, N. Ayache, Personalized radiotherapy planning based on a compu- tational tumor growth model, IEEE Trans. Med. Imaging 36 (2017) 815-825. ⇒ 112
  16. B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al., The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imaging 34, 10 (2015) 1993-2024. ⇒ 114, 118
  17. B. H. Menze, K. van Leemput, D. Lashkari, T. Riklin-Raviv, E. Geremia, E. Alberts, et al. , A generative probabilistic model and discriminative extensions for brain lesion segmentation -with application to tumor and stroke, IEEE Trans. Med. Imaging 35 (2016) 933-946. ⇒ 112
  18. I. Njeh, L. Sallemi, I. Ben Ayed, K. Chtourou, S. Lehericy, D. Galanaud, A. Ben Hamida, 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach, Comput. Med. Image Anal. 40 (2015) 108-119. ⇒ 111
  19. L. G. Nyúl, J. K. Udupa, X. Zhang, New variants of a method of MRI scale standardization, IEEE Trans. Med. Imaging 19, 2 (2010) 143-150. ⇒ 111, 114
  20. S. Pereira, A. Pinto, V. Alves, C. A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images, IEEE Trans. Med. Imaging 35 (2016) 1240-1251. ⇒ 112
  21. A. Pinto, S. Pereira, D. Rasteiro, C. A. Silva, Hierarchical brain tumour seg- mentation using extremely randomized trees, Patt. Recogn. 82 (2018) 105-117. ⇒ 112, 129
  22. J. Sahdeva, V. Kumar, I. Gupta, N. Khandelwal, C. K. Ahuja, A novel content- based active countour model for brain tumor segmentation, Magn. Reson. Imag- ing 30 (2012) 694-715. ⇒ 111
  23. H. C. Shin, H. R. Roth, M. C. Gao, L. Lu, Z. Y. Xu, I. Nogues, J. H. Yao, D. Mollura, R. M. Summers, Deep nonvolutional neural networks for computer- aided detection: CNN architectures, dataset characteristics and transfer learning, IEEE Trans. Med. Imaging 35 (2016) 1285-1298. ⇒ 112
  24. Zs. Szabó, Z. Kapás, Á. Győrfi, L. Lefkovits, S. M. Szilágyi, L. Szilágyi, Auto- matic segmentation of low-grade brain tumor using a random forest classifier and Gabor features, Proc. 14th International Conference on Fuzzy Systems and Knowledge Discovery, Huangshan, China, 2018, pp. 1106-1113. ⇒ 112
  25. L. Szilágyi, L. Lefkovits, B. Benyó, Automatic Brain Tumor Segmentation in multispectral MRI volumes using a fuzzy c-means cascade algorithm, Proc. 11th International Conference on Fuzzy Systems and Knowledge Discovery, Zhangji- ajie, China, 2015, pp. 285-291. ⇒ 112
  26. N. J. Tustison, K. L. Shrinidhi, M. Wintermark, C. R. Durst, B. M. Kandel, J. C. Gee, M. C. Grossman, B. B. Avants, Optimal symmetric multimodal tem- plates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR, Neuroinformatics 13 (2015) 209-225. ⇒ 112
  27. U. Vovk, F. Pernus, B. Likar, A review of methods for correction of intensity inhomogeneity in MRI, IEEE Trans. Med. Imaging 26 (2007) 405-421. ⇒ 111
  28. R. Zaouche, A. Belaid, S. Aloui, B. Solaiman, L. Lecornu, D. Ben Salem, S. Tliba, Semi-automatic method for low-grade gliomas segmentation in magnetic resonance imaging, IRBM 39 (2018) 116-128. ⇒ 112
  29. N. Zhang, S. Ruan, S. Lebonvallet, Q. Liao, Y. Zhou, Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation, Comput. Vis. Image Undestand. 115 (2011) 256-269. ⇒ 112