Epigenetic modifications in the embryonic and induced pluripotent stem cells (original) (raw)

Abstract

Epigenetic modifications are involved in global reprogramming of the cell transcriptome. Therefore, synchronized major shifts in the expression of many genes could be achieved through epigenetic changes. The regulation of gene expression could be implemented by different epigenetic events including histone modifications, DNA methylation and chromatin remodelling. Interestingly, it has been documented that reprogramming of somatic cells to induced pluripotent stem (iPS) cells is also a typical example of epigenetic modifications. Additionally, epigenetic would determine the fates of almost all cells upon differentiation of stem cells into somatic cells. Currently, generation of iPS cells through epigenetic modifications is a routine laboratory practice. Despite all our knowledge, inconsistency in the results of reprogramming and differentiation of stem cells, highlight the need for more thorough investigation into the role of epigenetic modification in generation and maintenance of stem cells. Besides, subtle differences have been observed among different iPS cells and between iPS and ES cells. Although, a handful of detailed review regarding the status of epigenetics in stem cells has been published previously, in the current review, an abstracted and rather simplified view has been presented for those who want to gain a more general overview on this subject. However, almost all key references and ground breaking studies were included, which could be further explored to gain more in depth knowledge regarding this topic. The most dominant epigenetic changes have been presented followed by the impacts of such changes on the global gene expression. Epigenetic status in iPS and ES cells were compared. In addition to including the issues related to X-chromosome reactivation in the stem cells, we have also included loss of imprinting for some genes as a major drawback in generation of iPS cells. Finally, the overall impacts of epigenetic modifications on different aspects of stem cells has been discussed, including their use in cell therapy.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (111)

  1. References: Amador-Arjona, A., Cimadamore, F., Huang, C.-T., Wright, R., Lewis, S., Gage, F. H., & Terskikh, A. V., 2015. SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. PNAS, 112, E1936-E1945.
  2. Avgustinova, A., Benitah, S.A., 2016. Epigenetic control of adult stem cell function. Nat. Rev. Mol. Cell Biol. 17, 643-658.
  3. Bannister, A.J., Schneider, R., Kouzarides, T., 2002. Histone Methylation. Cell. 109, 801-806.
  4. Bannister, A.J., Kouzarides, T., 2011. Regulation of chromatin by histone modifications. Cell Res. 21, 381- 395.
  5. Barakat, T.S., Ghazvini, M., de Hoon, B., et al., 2015. Stable X chromosome reactivation in female human induced pluripotent stem cells. Stem Cell Rep. 4, 199-208.
  6. Barrera, L.O., Li, Z., Smith, A.D., et al., 2008. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res. 18, 46-59.
  7. Bell, R.E., Golan, T., Sheinboim, D., et al., 2016. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res. 26, 601-611.
  8. Berdasco, M., Esteller, M., 2011. DNA methylation in stem cell renewal and multipotency. Stem Cell Res. Ther. 2, 42. https://doi.org/10.1186/scrt83.
  9. Bhanu, N.V., Sidoli, S., Garcia, B.A., 2016. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation. Proteomics. 16, 448-458.
  10. Bibikova, M., Laurent, L.C., Ren, B., et al., 2008. Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell. 2, 123-134.
  11. Bilic, J., Belmonte, J.C.I., 2012. Concise review: Induced pluripotent stem cells versus embryonic stem cells: Close enough or yet too far apart? Stem Cells. 30, 33-41.
  12. Bird, A.P., Wolffe, A.P., 1999. Methylation-induced repression--belts, braces, and chromatin. Cell. 99, 451-454.
  13. Borrelli, E., Nestler, E.J., Allis, C.D., Sassone-Corsi, P., 2008. Decoding the epigenetic language of neuronal plasticity. Neuron. 60, 961-974.
  14. Broccoli, V., Colasante, G., Sessa, A., Rubio, A., 2015. Histone modifications controlling native and induced neural stem cell identity. Curr. Opin. Genet. Dev. 34, 95-101.
  15. Bruck, T., Benvenisty, N., 2011. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Res. 6, 187-193.
  16. Calo, E. Wysocka, J., 2013. Modification of enhancer chromatin: what, how and why? Mol. Cell. 49. https://doi.org/10.1016/j.molcel.2013.1001.1038.
  17. Cantone, I., Bagci, H., Dormann, D., et al., 2016. Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nat. Commun. 7. https://doi.org/10.1038/ncomms12354.
  18. Chang, B., Chen, Y., Zhao, Y., Bruick, R.K., 2007. JMJD6 is a histone arginine demethylase. Science. 318, 444-447.
  19. Chin, M.H., Mason, M.J., Xie, W., et al., 2009. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 5, 111-123.
  20. Choi, K.-H., Park, J.-K., Son, D., Hwang, J. Y., Lee, D.-K., Ka, H., Lee, C.-K., 2016. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig. PLoS ONE, 11, e0158046.
  21. Cotton, A.M., Price, E.M., Jones, M.J., et al., 2015. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum. Mol. Genet. 24, 1528-1539.
  22. Cuthbert, G.L., Daujat, S., Snowden, A.W., et al., 2004. Histone deimination antagonizes arginine methylation. Cell. 118, 545-553.
  23. Daley, G.Q., Lensch, M.W., Jaenisch, R., et al., 2009. Broader implications of defining standards for the pluripotency of iPS cells. Cell Stem Cell. 4, 200-201.
  24. Dandulakis, M.G., Meganathan, K., Kroll, K.L., et al., 2016. Complexities of X chromosome inactivation status in female human induced pluripotent stem cells-a brief review and scientific update for autism research. J. Neurodev. Disord. 8, 22. https://doi.org/10.1186/s11689-016-9155-8
  25. Dawson, M.A., Bannister, A.J., Gottgens, B., et al., 2009. JAK2 phosphorylates histone H3Y41 and excludes HP1[agr] from chromatin. Nature. 461, 819-822.
  26. Deindl, S., Hwang, W.L., Hota, S.K., Blosser, T.R., Prasad, P., Bartholomew, B., & Zhuang, X, 2013. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell, 152, 442-452.
  27. Do, J.T., Han, D.W., Gentile, L., et al., 2009. Reprogramming of Xist against the pluripotent state in fusion hybrids. J. Cell Sci. 122, 4122-4129.
  28. Doi, A., Park, I.H., Wen, B., et al., 2009. Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350-1353.
  29. Dovey, O.M., Foster, C.T., Cowley, S.M., 2010. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. P. Natl. Acad. Sci. USA. 107, 8242-8247.
  30. Ellis, J., Bruneau, B.G., Keller, G., et al., 2009. Alternative induced pluripotent stem cell characterization criteria for in vitro applications. Cell Stem Cell. 4, 198-199.
  31. Ernst, J., Kheradpour, P., Mikkelsen, T.S., et al., 2011. Systematic analysis of chromatin state dynamics in nine human cell types. Nature. 473, 43-49.
  32. Freberg, C.T., Dahl, J.A., Timoskainen, S., Collas, P. 2007. Epigenetic Reprogramming of OCT4 and NANOG Regulatory Regions by Embryonal Carcinoma Cell Extract. Molecular Biology of the Cell. 18, 1543-1553.
  33. Geens, M., Seriola, A., Barbé, L., et al., 2016. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol. Hum. Reprod. 22, 285-298.
  34. Ghosh, Z., Wilson, K.D., Wu, Y., et al., 2010. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. Plos One. 5, e8975. https://doi.org/10.1371/journal.pone.0008975.
  35. Gibney, E.R., Nolan, C.M., 2010. Epigenetics and gene expression. Heredity. 105, 4-13.
  36. Golob, J.L., Paige, S.L., Muskheli, V., Pabon, L., Murry, C.E., 2008. Chromatin remodeling during mouse and human embryonic stem cell differentiation. Dev. D. 237, 1389-1398.
  37. Greer, E. L., Shi, Y., 2012. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews. Genetics, 13, 343-357.
  38. Guo, H., Hu, B., Yan, L., et al., 2016. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells. Cell Res. 2, 165-183.
  39. Guyochin, A., Maenner, S., Chu, E.T.J., et al., 2014. Live cell imaging of the nascent inactive X chromosome during the early differentiation process of naive ES cells towards Epiblast stem cells. Plos. One. 9: e116109. https://doi.org/10.1371/journal.pone.0116109.
  40. Hanna, J., Cheng, A.W., Saha, K., et al., 2010. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ES cells. Proceedings of the National Academy of Sciences 107, 9222-9227.
  41. Harikumar, A., Meshorer, E., 2015. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 16, 1609-1619.
  42. Hattori, N., Nishino, K., Ko, Y.-g., Hattori, N., Ohgane, J., Tanaka, S. and Shiota, K., 2004. Epigenetic Control of Mouse Oct-4 Gene Expression in Embryonic Stem Cells and Trophoblast Stem Cells. Journal of Biological Chemistry, 279, 17063-17069.
  43. Hawkins, R.D., Hon, G.C., Lee, L.K., et al., 2010. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell. 6, 479-491.
  44. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT
  45. Hayashi, K., Sasamura, H., Nakamura, M., Azegami, T., Oguchi, H., Sakamaki, Y., Itoh, H., 2014. KLF4- dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. The Journal of Clinical Investigation, 124, 2523-2537.
  46. Heyn, H., Vidal, E., Ferreira, H.J., et al., 2016. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol. 17, 11. https://doi.org/10.1186/s13059-016-0879-2.
  47. Ho, L., Ronan, J.L., Wu, J., et al., 2009. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. P. Nat .Acad. Sci. USA. 106, 5181-5186.
  48. Hon, G.C., Rajagopal, N., Shen, Y., et al., 2013. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198-1206.
  49. Hota, S.K., & Bruneau, B.G., 2016. ATP-dependent chromatin remodeling during mammalian development. Development. 143, 2882-2897.
  50. Huang, B., Li, G., Jiang, X.H., 2015. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res. Ther. 6, 35. https://doi.org/10.1186/s13287-015-0018-0.
  51. Jeong, J., Kim, K.N., Chung, M.S., Kim, H.J., 2016. Functional comparison of human embryonic stem cells and induced pluripotent stem cells as sources of hepatocyte-like cells. Tissue Eng. Regen. Med. 13, 740- 749.
  52. Keenen, B., de la Serna, I.L., 2009. Chromatin remodeling in embryonic stem cells: Regulating the balance between pluripotency and differentiation. J. Cell. Physioll 219, 1-7.
  53. Kim, J.S., Choi, H.W., Araúzo-Bravo, M.J., et al., 2015. Reactivation of the inactive X chromosome and post-transcriptional reprogramming of Xist in iPSCs. J. Cell Sci. 128, 81-87.
  54. Lewitzky, M., Yamanaka, S., 2007. Reprogramming somatic cells towards pluripotency by defined factors. Curr. Opin. Biotech. 18, 467-473.
  55. Li, E., Beard, C., Jaenisch, R., 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362- 365.
  56. Paulsen, M., Ferguson-Smith, A.C., 2001. DNA methylation in genomic imprinting, development, and disease. J. Pathol. 195, 97-110.
  57. Lim, D.H.K., Maher, E.R., 2010. DNA methylation: a form of epigenetic control of gene expression. Obstet. Gynaecol. 12, 37-42.
  58. Lin, S.H., Wang, J., Saintigny, P., et al., 2014. Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics. 15, 1079.
  59. Lister, R., Pelizzola, M., Kida, Y.S., et al., 2011. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 471, 68-73.
  60. Liu, L., Luo, G.Z., Yang, W., et al., 2010. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J. Biol. Chem. 285, 19483-19490.
  61. Luo, R.X., Dean, D.C., 1999. Chromatin remodeling and transcriptional regulation. J. Natl. Cancer Instit. 91, 1288-1294.
  62. Ma, A.N., Wang, H., Guo, R., et al., 2014. Targeted gene suppression by inducing de novo DNA methylation in the gene promoter. Epigenet. Chromatin. 7, 20. https://doi.org/10.1186/1756-8935-7-20.
  63. Maherali, N., Sridharan, R., Xie, W., et al., 2007. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 1, 55-70.
  64. Maherali, N., Hochedlinger, K., 2008. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 3, 595-605.
  65. Mallon, B.S., Hamilton, R.S., Kozhich, O.A., et al., 2014. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res. 12, 376-386.
  66. Marchetto, M.C.N., Yeo, G.W., Kainohana, O., et al., 2009. Transcriptional signature and memory retention of human-induced pluripotent stem cells. Plos One 4, e7076.
  67. Mattout, A., Cabianca, D.S., Gasser, S.M., 2015. Chromatin states and nuclear organization in development -a view from the nuclear lamina. Genome Biol. 16, 174. https://doi.org/10.1186/s13059- 015-0747-5.
  68. Minina, Y.M., Zhdanova, N.S., Shilov, A.G., Tolkunova, E.N., Liskovykh, M.A., Tomilin, A.N., 2010. Chromosomal instability of mouse pluripotent cells cultured in vitro. Cell Tissue Biol. 4, 223-227.
  69. Minkovsky, A., Patel, S., Plath, K., 2012. Pluripotency and the transcriptional inactivation of the female mammalian X chromosome. Stem cells. 30, 48-54.
  70. Moarii, M., Boeva, V., Vert, J.P., Reyal, F., 2015. Changes in correlation between promoter methylation and gene expression in cancer. BMC Genomics. 16, 873. https://doi.org/10.1186/s12864-015-1994-2.
  71. Nagamori, I., Kobayashi, H., Shiromoto, Y., et al., 2015. Comprehensive DNA methylation analysis of retrotransposons in male germ cells. Cell Rep. 12, 1541-1547.
  72. Narlikar, G.J., Sundaramoorthy, R., Owen-Hughes, T., 2013. Mechanisms and functions of ATP- dependent chromatin-remodeling enzymes. Cell. 154, 490-503.
  73. Navarro, P., Chambers, I., Karwacki-Neisius, V., et al., 2008. Molecular coupling of Xist regulation and pluripotency. Science. 321, 1693-1695.
  74. Nowak, S.J., Aihara, H., Gonzalez, K., Nibu, Y., & Baylies, M.K., 2012. Akirin Links Twist-Regulated Transcription with the Brahma Chromatin Remodeling Complex during Embryogenesis. PLoS Genetics, 8(3), e1002547.
  75. Okita, K., Ichisaka, T., Yamanaka, S., 2007. Generation of germline-competent induced pluripotent stem cells. Nature. 448, 313-317.
  76. Papp, B., Plath, K., 2011. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 21, 486-501.
  77. Patel, S., Bonora, G., Sahakyan, A., et al., 2017. Human embryonic stem cells do not change their X inactivation status during differentiation. Cell Rep. 18, 54-67.
  78. Perez-Lluch, S., Blanco, E., Tilgner, H., et al., 2015. Absence of canonical marks of active chromatin in developmentally regulated genes. Nat. Genet. 47, 1158-1167.
  79. Pisanic, I.T.R., Athamanolap, P., Wang, T.H., 2017. Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin. Cell Dev. Biol. 64, 5-17.
  80. Prilutsky, D., Palmer, N.P., Smedemark-Margulies, N., et al., 2014. iPSC-derived neurons as a higher- throughput readout for autism: Promises and pitfalls. Trends Mol. Med. 20, 91-104.
  81. Rossetto, D., Avvakumov, N., Côté, J., 2012. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics. 7, 1098-1108.
  82. Rugg-Gunn, P.J., Cox, B.J., Ralston, A., Rossant, J., 2010. Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. P. Natl. Acad. Sci. USA. 107, 10783-10790.
  83. Sawicka, A., Seiser, C., 2012. Histone H3 phosphorylation -A versatile chromatin modification for different occasions. Biochimie. 94, 2193-2201.
  84. Sawicka A, Seiser C., 2014. Sensing core histone phosphorylation -A matter of perfect timing. Biochimica et Biophysica Acta. 1839, 711-718.
  85. Senner, C.E., Krueger, F., Oxley, D., Andrews, S., Hemberger, M., 2012. DNA methylation profiles define stem cell identity and reveal a tight embryonic-extraembryonic lineage boundary. Stem Cells. 30, 2732- 2745.
  86. Syed, K. M., Joseph, S., Mukherjee, A., Majumder, A., Teixeira, J. M., Dutta, D., & Pillai, M. R., 2016. Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts. Journal of Cell Science, 129, 4576-4591.
  87. Schlosberg, C.E., VanderKraats, N.D., Edwards, J.R., 2017. Modeling complex patterns of differential DNA methylation that associate with gene expression changes. Nucleic Acids Res. 45, 5100-5111.
  88. Sharp, A.J., Stathaki, E., Migliavacca, E., et al., 2011. DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 21, 1592-1600.
  89. Sheaffer, K.L., Kim, R., Aoki, R., et al., 2014. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev. 28, 652-664.
  90. Shi, Y., Lan, F., Matson, C., et al., 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119, 941-953.
  91. Sikorska, M., Sandhu, J.K., Deb-Rinker, P., Jezierski, A., LeBlanc, J., Charlebois, C., Ribecco-Lutkiewicz, M., Bani-Yaghoub, M. and Walker, P. R., 2008. Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. J. Neurosci. Res., 86: 1680-1693.
  92. Singer, Z.S., Yong, J., Tischler, J., et al., 2014. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell. 55, 319-331.
  93. Srinageshwar, B., Maiti, P., Dunbar, G. L., & Rossignol, J., 2016. Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases. International Journal of Molecular Sciences, 17,1-15.
  94. Stadtfeld, M., Apostolou, E., Akutsu, H., et al., 2010. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature. 465, 175-181.
  95. Surani, M.A., Hayashi, K., Hajkova, P., 2007. Genetic and epigenetic regulators of pluripotency. Cell. 128, 747-762.
  96. Suzuki, M.M., Bird, A., 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465-476.
  97. Takahashi, K., Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676.
  98. Takahashi, N., Okamoto, A., Kobayashi, R., et al., 2009. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum. Mol. Genet. 18, 1879-1888.
  99. Tchieu, J., Kuoy, E., Chin, M.H., et al., 2010. Female human iPS cells retain an inactive X-chromosome. Cell Stem Cell. 7, 329-342.
  100. Tjeertes, J.V., Miller, K.M., Jackson, S.P., 2009. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28, 1878-1889.
  101. Vaskova, E.A., Stekleneva, A.E., Medvedev, S.P, Zakian, S.M., 2013. Epigenetic memory" phenomenon in induced pluripotent stem cells. Acta Nat.. 4, 15-21.
  102. Wagner, J.R., Busche, S., Ge, B., et al., 2014. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 15, R37. https://doi.org/doi: 10.1186/gb-2014-15-2-r37
  103. Wang, Y., Wysocka, J., Sayegh, J., et al., 2004. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 306, 279-283.
  104. Wang, G.G, Allis, C.D., Chi, P., 2007. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med. 13, 373-380.
  105. Wernig, M., Meissner, A., Foreman, R., et al., 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 448, 318-324.
  106. Whetstine, J.R., Nottke, A., Lan, F., et al., 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 125, 467-481.
  107. Williams, L.H., Kalantry, S., Starmer, J., Magnuson, T., 2011. Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass. Dev. 138, 2049-2057.
  108. Wutz, A., Jaenisch, R., 2000. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell. 5, 695-705.
  109. Yang, J.-H., Song, T.-Y., Jo, C., Park, J., Lee, H.-Y., Song, I., Cho, E.-J., 2016. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp and Mol Medicine, 48, e252
  110. Yu, J., Vodyanik, M.A., Smuga-Otto, K., et al., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318: 1917-1920.
  111. Zhou, Y., Kim, J., Yuan, X., Braun, T., 2011. Epigenetic modifications of stem cells. Circ. Res. 109, 1067- 1081.