Heat-stressed coral microbiomes are stable and potentially beneficial at the level of taxa and functional genes (original) (raw)

Bacterial community dynamics are linked to patterns of coral heat tolerance

Nature communications, 2017

Ocean warming threatens corals and the coral reef ecosystem. Nevertheless, corals can be adapted to their thermal environment and inherit heat tolerance across generations. In addition, the diverse microbes that associate with corals have the capacity for more rapid change, potentially aiding the adaptation of long-lived corals. Here, we show that the microbiome of reef corals is different across thermally variable habitats and changes over time when corals are reciprocally transplanted. Exposing these corals to thermal bleaching conditions changes the microbiome for heat-sensitive corals, but not for heat-tolerant corals growing in habitats with natural high heat extremes. Importantly, particular bacterial taxa predict the coral host response in a short-term heat stress experiment. Such associations could result from parallel responses of the coral and the microbial community to living at high natural temperatures. A competing hypothesis is that the microbial community and coral he...

Metagenomic analysis of stressed coral holobionts

Environmental Microbiology, 2009

The coral holobiont is the community of metazoans, protists and microbes associated with scleractinian corals. Disruptions in these associations have been correlated with coral disease, but little is known about the series of events involved in the shift from mutualism to pathogenesis. To evaluate structural and functional changes in coral microbial communities, Porites compressa was exposed to four stressors: increased temperature, elevated nutrients, dissolved organic carbon loading and reduced pH. Microbial metagenomic samples were collected and pyrosequenced. Functional gene analysis demonstrated that stressors increased the abundance of microbial genes involved in virulence, stress resistance, sulfur and nitrogen metabolism, motility and chemotaxis, fatty acid and lipid utilization, and secondary metabolism. Relative changes in taxonomy also demonstrated that coral-associated microbiota (Archaea, Bacteria, protists) shifted from a healthy-associated coral community (e.g. Cyanobacteria, Proteobacteria and the zooxanthellae Symbiodinium) to a community (e.g. Bacteriodetes, Fusobacteria and Fungi ) of microbes often found on diseased corals. Additionally, low-abundance Vibrio spp. were found to significantly alter microbiome metabolism, suggesting that the contribution of a just a few members of a commu-nity can profoundly shift the health status of the coral holobiont.

The coral microbiome: towards an understanding of the molecular mechanisms of coral–microbiota interactions

Fems Microbiology Reviews, 2023

Corals live in a complex, multi-partite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbor a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially-derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.

Coral and Seawater Metagenomes Reveal Key Microbial Functions to Coral Health and Ecosystem Functioning Shaped at Reef Scale

2021

Background The coral holobiont is comprised of a highly diverse microbial community that provides key services to corals such as protection against pathogens and nutrient cycling. The coral surface mucus layer (SML) microbiome is very sensitive to external changes and tied to ecosystem functioning, as it constitutes the direct interface between the coral host and the environment. The functional profile of microbial genes in the coral SML is underexplored and the use of shotgun metagenomics is relatively rare among coral microbiome studies. Here we investigate whether the bacterial taxonomic and functional profiles in the coral SML are shaped by the local reef zone and explore their role in coral health and ecosystem functioning. Results The analysis was conducted using metagenomes and metagenome assemble genomes (MAGs) associated with the coral Pseudodiploria strigosa and the water column from two naturally distinct reef environments in Bermuda: inner patch reefs exposed to a fluctu...

Elucidating gene expression adaptation of phylogenetically divergent coral holobionts under heat stress

Nature Communications

As coral reefs struggle to survive under climate change, it is crucial to know whether they have the capacity to withstand changing conditions, particularly increasing seawater temperatures. Thermal tolerance requires the integrative response of the different components of the coral holobiont (coral host, algal photosymbiont, and associated microbiome). Here, using a controlled thermal stress experiment across three divergent Caribbean coral species, we attempt to dissect holobiont member metatranscriptome responses from coral taxa with different sensitivities to heat stress and use phylogenetic ANOVA to study the evolution of gene expression adaptation. We show that coral response to heat stress is a complex trait derived from multiple interactions among holobiont members. We identify host and photosymbiont genes that exhibit lineage-specific expression level adaptation and uncover potential roles for bacterial associates in supplementing the metabolic needs of the coral-photosymbi...

Coral physiology and microbiome dynamics under combined warming and ocean acidification

PloS one, 2018

Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in th...

Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history

Scientific reports, 2017

Seasonal variation in temperature fluctuations may provide corals and their algal symbionts varying abilities to acclimate to changing temperatures. We hypothesized that different temperature ranges between seasons may promote temperature-tolerance of corals, which would increase stability of a bacterial community following thermal stress. Acropora muricata coral colonies were collected in summer and winter (water temperatures were 23.4-30.2 and 12.1-23.1 °C, respectively) from the Penghu Archipelago in Taiwan, then exposed to 6 temperature treatments (10-33 °C). Changes in coral-associated bacteria were determined after 12, 24, and 48 h. Based on 16S rRNA gene amplicons and Illumina sequencing, bacterial communities differed between seasons and treatments altered the dominant bacteria. Cold stress caused slower shifts in the bacterial community in winter than in summer, whereas a more rapid shift occurred under heat stress in both seasons. Results supported our hypothesis that bact...

Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment

Coral Reefs, 2020

Climate change threatens the survival of sclerac-tinian coral from exposure to concurrent ocean warming, acidification and deoxygenation; how corals can potentially adapt to this trio of stressors is currently unknown. This study investigates three coral species (Acropora muricata, Acrop-ora pulchra and Porites lutea) dominant in an extreme mangrove lagoon (Bouraké, New Caledonia) where abiotic conditions exceed those predicted for many reef sites over the next 100 years under climate change and compared them to conspecifics from an environmentally more benign reef habitat. We studied holobiont physiology as well as plasticity in coral-associated microorganisms (Symbiodiniaceae and bacteria) through ITS2 and 16S rRNA sequencing, respectively. We hypothesised that differences in coral-associated microorganisms (Symbiodiniaceae and bacteria) between the lagoonal and adjacent reef habitats may support coral host productivity and ultimately the ability of corals to live in extreme environments. In the lagoon, all coral species exhibited a metabolic adjustment of reduced photosynthesis-to-respiration ratios (P/R), but this was accompanied by highly divergent coral host-specific microbial associations. This was substantiated by the absence of shared ITS2-type profiles (proxies for Symbiodiniaceae genotypes).