Schwinger, Pegg and Barnett approaches and a relationship between angular and Cartesian quantum descriptions (original) (raw)

Schwinger and Pegg-Barnett approaches and a relationship between angular and Cartesian quantum descriptions: II. Phase spaces

Maurizio Ruzzi

Journal of Physics A-mathematical and General, 2002

View PDFchevron_right

Quantum Mechanics in Phase Space: An Overview with Selected Papers (World Scientific)

Cosmas Zachos

View PDFchevron_right

The action-angle Wigner function: a discrete, finite and algebraic phase space formalism

Tugrul Hakioglu

Journal of Physics A: Mathematical and General, 2000

View PDFchevron_right

Phase-space descriptions of operators and the Wigner distribution in quantum mechanics II. The finite dimensional case

Giuseppe Marmo

2005

View PDFchevron_right

Theoretical formulation of finite-dimensional discrete phase spaces: I. Algebraic structures and uncertainty principles

matilde ruzzi

Annals of Physics, 2012

View PDFchevron_right

On a quantum algebraic approach to a generalized phase space

David Bohm

Foundations of Physics, 1981

View PDFchevron_right

Quantum Mechanics in Phase Space

Thomas Curtright, Cosmas Zachos

View PDFchevron_right

A quantum mechanical representation in phase space

John Frederick

The Journal of Chemical Physics, 1993

View PDFchevron_right

Discrete Phase Space: Quantum mechanics and non-singular potential functions

Andrew DeBenedictis

arXiv (Cornell University), 2015

View PDFchevron_right

On the representation of quantum mechanics on phase space

Werner Stulpe

International Journal of Theoretical Physics, 1992

View PDFchevron_right

A connection between quantum Hilbert-space and classical phase-space operators by. D Campos, J D Urbina and C Viviescas

Diogenes Campos

View PDFchevron_right

The Weyl‐Wigner‐Moyal Formalism on a Discrete Phase Space. I. A Wigner Function for a Nonrelativistic Particle with Spin

Maciej Przanowski

Fortschritte der Physik, 2019

View PDFchevron_right

Study on a Phase Space Representation of Quantum Theory

Rakotoson Hanitriarivo

2013

View PDFchevron_right

Phase space quantum mechanics via frame quantization on finite groups

Job A. Nable

The 5th Innovation and Analytics Conference & Exhibition (IACE 2021)

View PDFchevron_right

Finite-Dimensional Discrete Phase-Space Description

Tiago Debarba

2014

View PDFchevron_right

Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase

Tugrul Hakioglu

Journal of Physics A: Mathematical and General, 1998

View PDFchevron_right

Discrete Wigner functions and the phase space representation of quantum computers

Pablo Bianucci

Physics Letters A, 2002

View PDFchevron_right

On quantum mechanical phase‐space wave functions

Joachim Wlodarz

Journal of Chemical Physics, 1994

View PDFchevron_right

Quantum mechanics in phase space: The Schrödinger and the Moyal representations

Franz Luef

Journal of Pseudo-Differential Operators and Applications, 2012

View PDFchevron_right

ANL-HEP-PR-01-095 Deformation Quantization: Quantum Mechanics Lives and Works in Phase-Space

Cosmas Zachos

2016

View PDFchevron_right

THE QUANTUM OSCILLATOR IN PHASE SPACE Part I

Emile Grgin

Fizika B, 1996

View PDFchevron_right

Deformation Quantization: Quantum Mechanics Lives and Works in Phase Space

Cosmas Zachos

International Journal of Modern Physics A, 2002

View PDFchevron_right

Phase-space descriptions of operators and the Wigner distribution in quantum mechanics I. A Dirac inspired view

Rajiah Simon

2005

View PDFchevron_right

Theoretical formulation of finite-dimensional discrete phase spaces: II. On the uncertainty principle for Schwinger unitary operators

Marcelo Marchiolli

View PDFchevron_right

Transformation theory for phase-space representations of quantum mechanics

Paul Brumer

Physical Review A, 2000

View PDFchevron_right

On the phase operator

Marian Grabowski

Reports on Mathematical Physics, 1991

View PDFchevron_right

Linear canonical transformations and quantum phase: a unified canonical and algebraic approach

Tugrul Hakioglu

Journal of Physics A: Mathematical and General, 1999

View PDFchevron_right

Notes on qubit phase space and discrete symplectic structures

Etera Livine

Journal of Physics A: Mathematical and Theoretical, 2010

View PDFchevron_right

A connection between quantum Hilbert-space and classical phase-space operators

Diogenes Campos

Journal of Physics A: Mathematical and General, 2000

View PDFchevron_right