A simple method for the isolation and detailed characterization of primary human proximal tubule cells for renal replacement therapy (original) (raw)

A morphological and functional comparison of proximal tubule cell lines established from human urine and kidney tissue

Experimental Cell Research, 2014

Promising renal replacement therapies include the development of a bioartificial kidney using functional human kidney cell models. In this study, human conditionally immortalized proximal tubular epithelial cell (ciPTEC) lines originating from kidney tissue (ciPTEC-T1 and ciPTEC-T2) were compared to ciPTEC previously isolated from urine (ciPTEC-U). Subclones of all ciPTEC isolates formed tight cell layers on Transwell inserts as determined by transepithelial resistance, inulin diffusion, E-cadherin expression and immunocytochemisty. Extracellular matrix genes collagen I and-IV α1 were highly present in both kidney tissue derived matured cell lines (po0.001) compared to matured ciPTEC-U, whereas matured ciPTEC-U showed a more pronounced fibronectin I and laminin 5 gene expression (po0.01 and po0.05, respectively). Expression of the influx carrier Organic Cation Transporter 2 (OCT-2), and the efflux pumps P-glycoprotein (P-gp), Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) were confirmed in the three cell lines using real-time PCR and Western blotting. The activities of OCT-2 and P-gp were sensitive to specific inhibition in all models (po0.001). The highest activity of MRP4 and BCRP was demonstrated in ciPTEC-U (po0.05). Finally, active albumin reabsorption was highest in ciPTEC-T2 (po0.001), while Na þ-dependent phosphate reabsorption was most abundant in ciPTEC-U (po0.01). In conclusion, ciPTEC established from human urine or kidney tissue display comparable functional PTEC specific transporters and physiological characteristics, providing ideal human tools for bioartificial kidney development.

A Human In Vitro Model That Mimics the Renal Proximal Tubule

Tissue Engineering Part C: Methods, 2014

Human in vitro-manufactured tissue and organ models can serve as powerful enabling tools for the exploration of fundamental questions regarding cell, matrix, and developmental biology in addition to the study of drug delivery dynamics and kinetics. To date, the development of a human model of the renal proximal tubule (PT) has been hindered by the lack of an appropriate cell source and scaffolds that allow epithelial monolayer formation and maintenance. Using extracellular matrices or matrix proteins, an in vivo-mimicking environment can be created that allows epithelial cells to exhibit their typical phenotype and functionality. Here, we describe an in vitro-engineered PT model. We isolated highly proliferative cells from cadaveric human kidneys (human kidney-derived cells [hKDCs]), which express markers that are associated with renal progenitor cells. Seeded on small intestinal submucosa (SIS), hKDCs formed a confluent monolayer and displayed the typical phenotype of PT epithelial cells. PT markers, including N-cadherin, were detected throughout the hKDC culture on the SIS, whereas markers of later tubule segments were weak (E-cadherin) or not (aquaporin-2) expressed. Basement membrane and microvilli formation demonstrated a strong polarization. We conclude that the combination of hKDCs and SIS is a suitable cell-scaffold composite to mimic the human PT in vitro.

A HumanIn VitroModel That Mimics the Renal Proximal Tubule

Tissue Engineering Part C-methods, 2014

Human in vitro-manufactured tissue and organ models can serve as powerful enabling tools for the exploration of fundamental questions regarding cell, matrix, and developmental biology in addition to the study of drug delivery dynamics and kinetics. To date, the development of a human model of the renal proximal tubule (PT) has been hindered by the lack of an appropriate cell source and scaffolds that allow epithelial monolayer formation and maintenance. Using extracellular matrices or matrix proteins, an in vivo-mimicking environment can be created that allows epithelial cells to exhibit their typical phenotype and functionality. Here, we describe an in vitro-engineered PT model. We isolated highly proliferative cells from cadaveric human kidneys (human kidney-derived cells [hKDCs]), which express markers that are associated with renal progenitor cells. Seeded on small intestinal submucosa (SIS), hKDCs formed a confluent monolayer and displayed the typical phenotype of PT epithelial cells. PT markers, including N-cadherin, were detected throughout the hKDC culture on the SIS, whereas markers of later tubule segments were weak (E-cadherin) or not (aquaporin-2) expressed. Basement membrane and microvilli formation demonstrated a strong polarization. We conclude that the combination of hKDCs and SIS is a suitable cell-scaffold composite to mimic the human PT in vitro.

Generation and characterization of iPSC-derived renal proximal tubule-like cells with extended stability

Scientific Reports

The renal proximal tubule is responsible for re-absorption of the majority of the glomerular filtrate and its proper function is necessary for whole-body homeostasis. Aging, certain diseases and chemical-induced toxicity are factors that contribute to proximal tubule injury and chronic kidney disease progression. To better understand these processes, it would be advantageous to generate renal tissues from human induced pluripotent stem cells (iPSC). Here, we report the differentiation and characterization of iPSC lines into proximal tubular-like cells (PTL). The protocol is a step wise exposure of small molecules and growth factors, including the GSK3 inhibitor (CHIR99021), the retinoic acid receptor activator (TTNPB), FGF9 and EGF, to drive iPSC to PTL via cell stages representing characteristics of early stages of renal development. Genome-wide RNA sequencing showed that PTL clustered within a kidney phenotype. PTL expressed proximal tubular-specific markers, including megalin (LR...

Growth, immortalization, and differentiation potential of normal adult human proximal tubule cells

In Vitro Cellular and Developmental Biology--Animal, 2004

Human proximal tubule epithelial cell lines are potentially useful models to elucidate the complex cellular and molecular details of water and electrolyte homeostasis in the kidney. Samples of normal adult human kidney tissue were obtained from surgical specimens, and S1 segments of proximal convoluted tubules were microdissected, placed on collagen-coated culture plate inserts, and cocultured with lethally irradiated 3T3 fibroblasts. Primary cultures of proximal tubule epithelial cells were infected with a replication-defective retroviral construct encoding either wild-type or temperature-sensitive simian virus 40 large T-antigen. Cells forming electrically resistive monolayers were selected and expanded in culture. Three cell lines (HPCT-03-ts, HPCT-05-wt, and HPCT-06-wt) were characterized for proximal tubule phenotype by electron microscopy, electrophysiology, immunofluorescence, Southern hybridization, and reverse transcriptase-polymerase chain reaction. Each of the three formed polarized, resistive epithelial monolayers with apical microvilli, tight junctional complexes, numerous mitochondria, well-developed Golgi complexes, extensive endoplasmic reticulum, convolutions of the basolateral plasma membrane, and a primary cilium. Each exhibited succinate, phosphate, and Na,K- adenosine triphosphatase (ATPase) transport activity, as well as acidic dipeptide- and adenosine triphosphate-regulated mechanisms of ion transport. Transcripts for Na(+)-bicarbonate cotransporter, Na(+)-H(+) exchanger isoform 3, Na,K-ATPase, parathyroid hormone receptor, epidermal growth factor receptor, and vasopressin V2 receptor were identified. Furthermore, immunoreactive sodium phosphate cotransporter type II, vasopressin receptor V1a, and CLIC-1 (NCC27) were also identified. These well-differentiated, transport-competent cell lines demonstrated the growth, immortalization, and differentiation potential of normal, adult, human proximal tubule cells and consequently have wide applicability in cell biology and renal physiology.

Atypical Features in Regenerating Tubules Point to a Risk for Implantation of Renal Stem/Progenitor Cells

Stem/progenitor cells are seen as a therapeutic option for repair of diseased renal parenchyma. However, actual data show that survival of implanted stem/progenitor cells is impeded by harmful interstitial environment. To learn about parameters for cell adaptation, renal stem/progenitor cells were mounted in a polyester (POSI-4) interstitium during perfusion culture. Controlled fluid environment was maintained by chemically defined CO2 - independent culture media for 13 days. Cell biological features were then analyzed by immunohistochemistry, while structural details were investigated by advanced fixation of specimens for microscopy. When stem/progenitor cells are kept in Leibovitz’s L-15 Medium or CO2 Independent Medium, spatial development of numerous tubules is observed. Immunolabel for TROMAIII, cingulin and laminin ɣ1 depicts that a homogenous cell population is contained. Semithin sections of specimens fixed in traditional glutaraldehyde (GA) solution reflect an unobtrusive morphology. In contrast, fixation by GA solution including ruthenium red unveils in tubules a thickened basal lamina. Fixation by GA solution including tannic acid illustrates atypical development of a heterogeneous epithelium consisting of bright and dark cells. Thus, advanced fixation of specimens makes pathological features visible, when regeneration is investigated by renal stem/ progenitor cells. To what extent a comparable risk lurks behind an implantation, has to be elaborated. Keywords: Kidney; Stem/Progenitor Cells; Niche; Regeneration; Artificial Interstitium; Polyester Fleece; Perfusion Culture; Chemically Defined Culture Medium.

Isolation and Characterization of Progenitor-Like Cells from Human Renal Proximal Tubules

American Journal of Pathology, 2011

The tubules of the kidney display a remarkable capacity for self-renewal on damage. Whether this regeneration is mediated by dedifferentiating surviving cells or, as recently suggested, by stem cells has not been unequivocally settled. Herein, we demonstrate that aldehyde dehydrogenase (ALDH) activity may be used for isolation of cells with progenitor characteristics from adult human renal cortical tissue. Gene expression profiling of the isolated ALDH high and ALDH low cell fractions followed by immunohistochemical interrogation of renal tissues enabled us to delineate a tentative progenitor cell population scattered through the proximal tubules (PTs). These cells expressed CD24 and CD133, previously described markers for renal progenitors of Bowman's capsule. Furthermore, we show that the PT cells, and the glomerular progenitors, are positive for KRT7, KRT19, BCL2, and vimentin. In addition, tubular epithelium regenerating on acute tubular necrosis displayed long stretches of CD133 ؉ /VIM ؉ cells, further substantiating that these cells may represent a progenitor cell population. Furthermore, a potential association of these progenitor cells with papillary renal cell carcinoma was discovered. Taken together, our data demonstrate the presence of a previously unappreciated subset of the PT cells that may be endowed with a more robust phenotype, allowing increased resistance to acute renal injury, enabling rapid repopulation of the tubules.

Cells sorted off hiPSC-derived kidney organoids coupled with immortalized cells reliably model the proximal tubule

Communications Biology

Of late, numerous microphysiological systems have been employed to model the renal proximal tubule. Yet there is lack of research on refining the functions of the proximal tubule epithelial layer—selective filtration and reabsorption. In this report, pseudo proximal tubule cells extracted from human-induced pluripotent stem cell-derived kidney organoids are combined and cultured with immortalized proximal tubule cells. It is shown that the cocultured tissue is an impervious epithelium that offers improved levels of certain transporters, extracellular matrix proteins collagen and laminin, and superior glucose transport and P-glycoprotein activity. mRNA expression levels higher than those obtained from each cell type were detected, suggesting an anomalous synergistic crosstalk between the two. Alongside, the improvements in morphological characteristics and performance of the immortalized proximal tubule tissue layer exposed, upon maturation, to human umbilical vein endothelial cells ...

Primary and Immortalized Cultures of Human Proximal Tubule Cells Possess Both Progenitor and Non-Progenitor Cells That Can Impact Experimental Results

Journal of Personalized Medicine

Studies have reported the presence of renal proximal tubule specific progenitor cells which co-express PROM1 and CD24 markers on the cell surface. The RPTEC/TERT cell line is a telomerase-immortalized proximal tubule cell line that expresses two populations of cells, one co-expressing PROM1 and CD24 and another expressing only CD24, identical to primary cultures of human proximal tubule cells (HPT). The RPTEC/TERT cell line was used by the authors to generate two new cell lines, HRTPT co-expressing PROM1 and CD24 and HREC24T expressing only CD24. The HRTPT cell line has been shown to express properties expected of renal progenitor cells while HREC24T expresses none of these properties. The HPT cells were used in a previous study to determine the effects of elevated glucose concentrations on global gene expression. This study showed the alteration of expression of lysosomal and mTOR associated genes. In the present study, this gene set was used to determine if pure populations of cel...

Allostimulatory capacity of conditionally immortalized proximal tubule cell lines for bioartificial kidney application

Scientific reports, 2017

Novel renal replacement therapies, such as a bioartificial kidney (BAK), are needed to improve current hemodialysis treatment of end-stage renal disease (ESRD) patients. As BAK applications may reveal safety concerns, we assessed the alloimmunization and related safety aspects of readily available conditionally immortalized human proximal tubule epithelial cell (ciPTEC) lines to be used in BAK. Two ciPTEC lines, originally derived from urine and kidney tissue, were characterized for the expression and secretion of relevant molecules involved in alloimmunization and inflammatory responses, such as HLA class-I, HLA-DR, CD40, CD80, CD86, as wells as soluble HLA class I and proinflammatory cytokines (IL-6, IL-8 and TNF-α). A lack of direct immunogenic effect of ciPTEC was shown in co-culture experiments with peripheral blood mononuclear cells (PBMC), after appropriate stimulation of ciPTEC. Tight epithelial cell monolayer formation on polyethersulfone flat membranes was confirmed by zon...