Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope (original) (raw)

Ptychographic atomic electron tomography: Towards three-dimensional imaging of individual light atoms in materials

Physical Review B, 2020

Through numerical simulations, we demonstrate the combination of ptychography and atomic electron tomography as an effective method for low dose imaging of individual low-Z atoms in three dimensions. After generating noisy diffraction patterns with multislice simulations of an aberration-corrected scanning transmission electron microscope through a 5-nm zinc-oxide nanoparticle, we have achieved three-dimensional (3D) imaging of individual zinc and oxygen atoms and their defects by performing tomography on ptychographic projections. The methodology has also been simulated in 2D materials, resolving individual sulfur atoms in vertical WS 2 /WSe 2 van der Waals heterostructure with a low total electron dose where annular-dark-field images fail to resolve. We envision that the development of this method could be instrumental in studying the precise 3D atomic structures of radiation sensitive systems and low-Z atomic structures such as 2D heterostructures, catalysts, functional oxides, and glasses.

Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit

Microscopy and Microanalysis, 2008

The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried S3 $112% grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.

Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-�� information limit

2008

The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried S3 $112% grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.

High-precision scanning transmission electron microscopy at coarse pixel sampling for reduced electron dose

Advanced Structural and Chemical Imaging, 2015

Determining the precise atomic structure of materials’ surfaces, defects, and interfaces is important to help provide the connection between structure and important materials’ properties. Modern scanning transmission electron microscopy (STEM) techniques now allow for atomic resolution STEM images to have down to sub-picometer precision in locating positions of atoms, but these high-precision techniques generally require large electron doses, making them less useful for beam-sensitive materials. Here, we show that 1- to 2-pm image precision is possible by non-rigidly registering and averaging a high-angle dark field image series of a 5- to 6-nm Au nanoparticle even though a very coarsely sampled image and decreased exposure time was used to minimize the electron dose. These imaging conditions minimize the damage to the nanoparticle and capture the whole nanoparticle in the same image. The high-precision STEM image reveals bond length contraction around the entire nanoparticle surfac...

Aberration-corrected electron microscopy imaging for nanoelectronics applications

2009

This paper addresses advances in electron microscopy that were accomplished over the past years with the incorporation of new electron optical components such as aberration correctors, monochromators or high brightness guns. Many of these developments are currently pursued within the DoE's TEAM project. As a result electron microscopy has reached 50 pm resolution. In this paper it is shown how the resolution improvement has helped to boost signal to noise ratios enabling a detection of single atoms across the Periodic Table of Elements. The described achievements allow for investigations of single point defects in nanoelectronic devices even if printed on single sheets of carbon atoms (graphene). Further it is now possible to access depth information from single projections with a precision that has reached interatomic distances.

Atomic Resolved Secondary Electron Imaging with an Aberration Corrected Scanning Transmission Electron Microscope

Microscopy and Microanalysis, 2011

We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization.

Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning

Nature communications, 2015

Screw dislocations play an important role in materials' mechanical, electrical and optical properties. However, imaging the atomic displacements in screw dislocations remains challenging. Although advanced electron microscopy techniques have allowed atomic-scale characterization of edge dislocations from the conventional end-on view, for screw dislocations, the atoms are predominantly displaced parallel to the dislocation line, and therefore the screw displacements are parallel to the electron beam and become invisible when viewed end-on. Here we show that screw displacements can be imaged directly with the dislocation lying in a plane transverse to the electron beam by optical sectioning using annular dark field imaging in a scanning transmission electron microscope. Applying this technique to a mixed [a+c] dislocation in GaN allows direct imaging of a screw dissociation with a 1.65-nm dissociation distance, thereby demonstrating a new method for characterizing dislocation core...

Electron tomography imaging methods with diffraction contrast for materials research

Microscopy, 2020

Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (nonatomic-resolution) ET imaging methods have garnered considerable attention from researchers. This research trend is probably not irrelevant due to the fact that the spatial resolution and functionality of 3D imaging methods of scanning electron microscopy (SEM) and X-ray microscopy have come to overlap with those of ET. In other words, there may be multiple ways to carry out 3D visualization using different microscopy methods for nanometer-scale objects in materials. From the above standpoint, this review paper aims to (i) describe the current status and issues of intermediate-resolution ET with regard to enhancing the effectiveness of TEM/STEM imaging and (ii) discuss promising applications of state-of-the-art intermediate-resolution ET for materials

Atomic resolution imaging using the real-space distribution of electrons scattered by a crystalline material

Acta Crystallographica Section A Foundations of Crystallography, 2011

We present an alternative atomic resolution incoherent imaging technique derived from scanning transmission electron microscopy (STEM) using detectors in real space, in contrast to conventional STEM that uses detectors in diffraction space. The images obtained from various specimens have a resolution comparable to conventional high-angle annular dark-field (HAADF) STEM with good contrast, which seems to be very robust with respect to thickness, focus and imaging conditions. The results of the simulations are consistent with the experimental results and support the interpretation of the real-space STEM image contrast as being a result of aberration-induced displacements of the high-angle scattered electrons.