CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3kinaseindependent manner (original) (raw)
Related papers
Chemokine regulation of naıve T cell traffic in health and disease
A central feature of the immune response is the precise spatio-temporal convergence of T cells and antigen presenting cells (APC) in particular microenvironments within secondary lymphoid organs (SLO). CCR7 and its ligands CCL19 and CCL21 have been identified as the gatekeepers for both naïve T lymphocytes and dendritic cells (DC) to these defined anatomical compartments. A new perception on the regulation of lymphocyte traffic in lymph nodes (LN) has come from observations that sphingosine-1-phosphate (S1P) receptor agonists affect T cell entry and exit from these organs. Recent developments in intravital microscopy (IVM) techniques reveal unexpected autonomous random motion of lymphocytes within secondary lymphoid tissues, and provoke questions about the mechanisms that guide their compartmental navigation.
The Journal of Immunology, 2003
Naive T cells are usually excluded from nonlymphoid tissues. Only when such tertiary tissues are subjected to chronic inflammation, such as in some (but not all) autoimmune diseases, are naive T cells recruited to these sites. We show that the CCR7 ligand CC chemokine ligand (CCL)21 is sufficient for attracting naive T cells into tertiary organs. We performed intravital microscopy of cremaster muscle venules in T-GFP mice, in which naive T cells express green fluorescent protein (GFP). GFP(+) cells underwent selectin-dependent rolling, but no firm adherence (sticking). Superfusion with CCL21, but not CXC chemokine ligand 12, induced integrin-dependent sticking of GFP(+) cells. Moreover, CCL21 rapidly elicited accumulation of naive T cells into sterile s.c. air pouches. Interestingly, a second CCR7 ligand, CCL19, triggered T cell sticking in cremaster muscle venules, but failed to induce extravasation in air pouches. Immunohistochemistry studies implicate ectopic expression of CCL21 as a mechanism for naive T cell traffic in human autoimmune diseases. Most blood vessels in tissue samples from patients with rheumatoid arthritis (85 +/- 10%) and ulcerative colitis (66 +/- 1%) expressed CCL21, and many perivascular CD45RA(+) naive T cells were found in these tissues, but not in psoriasis, where CCL21(+) vessels were rare (17 +/- 1%). These results identify endothelial CCL21 expression as an important determinant for naive T cell migration to tertiary tissues, and suggest the CCL21/CCR7 pathway as a therapeutic target in diseases that are associated with naive T cell recruitment.
Requirements for T Lymphocyte Migration in Explanted Lymph Nodes1
2007
Although the requirements for T lymphocyte homing to lymph nodes (LNs) are well studied, much less is known about the requirements for T lymphocyte locomotion within LNs. Imaging of murine T lymphocyte migration in explanted LNs using two-photon laser-scanning fluorescence microscopy provides an opportunity to systematically study these requirements. We have developed a closed system for imaging an intact LN with controlled temperature, oxygenation, and perfusion rate. Naive T lymphocyte locomotion in the deep paracortex of the LN required a perfusion rate of >13 m/s and a partial pressure of O 2 (pO 2 ) of >7.4%. Naive T lymphocyte locomotion in the subcapsular region was 38% slower and had higher turning angles and arrest coefficients than naive T lymphocytes in the deep paracortex. T lymphocyte activation decreased the requirement for pO 2 , but also decreased the speed of locomotion in the deep paracortex. Although CCR7 ؊/؊ naive T cells displayed a small reduction in locomotion, systemic treatment with pertussis toxin reduced naive T lymphocyte speed by 59%, indicating a contribution of G␣ i -mediated signaling, but involvement of other G protein-coupled receptors besides CCR7. Receptor knockouts or pharmacological inhibition in the adenosine, PG/lipoxygenase, lysophosphatidylcholine, and sphingosine-1phosphate pathways did not individually alter naive T cell migration. These data implicate pO 2 , tissue architecture, and G-protein coupled receptor signaling in regulation of naive T lymphocyte migration in explanted LNs.
The Journal of Immunology, 2007
Signals generated by the engagement of chemoattractants with their cognate receptors orchestrate lymphocyte movements into and out of lymphoid organs and sites of inflammation. Yet, the role of chemokines in organizing lymphocyte movements in lymphoid organs is controversial. Recent evidence suggests that the extensive network of fibroblastic reticular cells within the T cell areas helps guide T cells. The expression of adhesion molecules and chemokines by fibroblastic reticular cells most likely facilitates their influence on T cell movements. Consistent with this hypothesis, CD4 T cells with defective chemokine receptor signaling move very differently within lymph nodes than do normal cells. For the imaging studies, we used CD4 T cells prepared from Gnai2−/− mice, which lack Gαi2 expression. We first demonstrate that CD4 as well as CD8 T cells from these mice are markedly defective in chemokine receptor signaling. Gnai2−/− T cells have profound defects in chemokine-induced intrace...
Blood, 2011
B lymphocyte recirculation through lymph nodes (LNs) requires crossing endothelial barriers and chemoattractant-triggered cell migration. Here we show how LN anatomy and chemoattractant receptor signaling organize B lymphocyte LN trafficking. Blood-borne B cells predominately used CCR7 signaling to adhere to high endothelial venules (HEVs). New B cell emigrants slowly transited the HEV perivenule space, and thereafter localized nearby, avoiding the follicle. Eventually, the newly arrived B cells entered the basal portion of the follicle gradually populating it. In contrast, newly arriving activated B cells rapidly crossed HEVs and migrated toward the lymph node follicle. During their LN residency, recirculating B cells reacquired their sphingosine-1 phospate receptor 1 (S1P1) receptors and markedly attenuated their sensitivity to chemokines. Eventually, the B cells exited the LN follicle by entering the cortical lymphatics or returning to the paracortical cords. Upon entering the ly...