Structural basis of glycan interaction in gastroenteric viral pathogens (original) (raw)

Glycan recognition in globally dominant human rotaviruses

Nature communications, 2018

Rotaviruses (RVs) cause life-threatening diarrhea in infants and children worldwide. Recent biochemical and epidemiological studies underscore the importance of histo-blood group antigens (HBGA) as both cell attachment and susceptibility factors for the globally dominant P[4], P[6], and P[8] genotypes of human RVs. How these genotypes interact with HBGA is not known. Here, our crystal structures of P[4] and a neonate-specific P[6] VP8*s alone and in complex with H-type I HBGA reveal a unique glycan binding site that is conserved in the globally dominant genotypes and allows for the binding of ABH HBGAs, consistent with their prevalence. Remarkably, the VP8* of P[6] RVs isolated from neonates displays subtle structural changes in this binding site that may restrict its ability to bind branched glycans. This provides a structural basis for the age-restricted tropism of some P[6] RVs as developmentally regulated unbranched glycans are more abundant in the neonatal gut.

Glycan-mediated interactions between bacteria, rotavirus and the host cells provide an additional mechanism of antiviral defence

Beneficial Microbes

Limited efficacy of rotavirus (RV) vaccines in children in developing countries and in animals remains a significant problem necessitating further search for additional approaches to control RV-associated gastroenteritis. During cell attachment and entry events, RV interacts with cell surface O-glycans including histo-blood group antigens (HBGAs). Besides modulation of the protective immunity against RV, several commensal and probiotic bacteria were shown to express HBGA-like substances suggesting that they may affect RV attachment and entry into the host cells. Moreover, some beneficial bacteria have been shown to possess the ability to bind host HBGAs via sugar specific proteins called lectins. However, limited research has been done to evaluate the effects of HBGA-expressing and/or HBGA-binding bacteria on RV infection. The aim of this study was to investigate the ability of selected commensal and probiotic bacteria to bind different RV strains via HBGAs and to block RV infection...

Novel fold of rotavirus glycan-binding domain predicted by AlphaFold2 and determined by X-ray crystallography

Communications Biology

The VP8* domain of spike protein VP4 in group A and C rotaviruses, which cause epidemic gastroenteritis in children, exhibits a conserved galectin-like fold for recognizing glycans during cell entry. In group B rotavirus, which causes significant diarrheal outbreaks in adults, the VP8* domain (VP8*B) surprisingly lacks sequence similarity with VP8* of group A or group C rotavirus. Here, by using the recently developed AlphaFold2 for ab initio structure prediction and validating the predicted model by determining a 1.3-Å crystal structure, we show that VP8*B exhibits a novel fold distinct from the galectin fold. This fold with a β-sheet clasping an α-helix represents a new fold for glycan recognition based on glycan array screening, which shows that VP8*B recognizes glycans containing N-acetyllactosamine moiety. Although uncommon, our study illustrates how evolution can incorporate structurally distinct folds with similar functionality in a homologous protein within the same virus ge...

Murine Noroviruses Bind Glycolipid and Glycoprotein Attachment Receptors in a Strain-Dependent Manner

Journal of Virology, 2012

Human norovirus infections are the most common cause of acute nonbacterial gastroenteritis in humans worldwide, and glycan binding plays an important role in the susceptibility to these infections. However, due to the lack of an efficient cell culture system or small animal model for human noroviruses, little is known about the biological role of glycan binding during infection. Murine noroviruses (MNV) are also enteric viruses that bind to cell surface glycans, but in contrast to their human counterparts, they can be grown in tissue culture and a small animal host. In this study, we determined glycan-binding specificities of the MNV strains MNV-1 and CR3 in vitro, identified molecular determinants of glycan binding, and analyzed infection in vivo. We showed that unlike MNV-1, CR3 binding to murine macrophages was resistant to neuraminidase treatment and glycosphingolipid depletion. Both strains depended on N-linked glycoproteins for binding, while only MNV-1 attachment to macrophages was sensitive to O-linked glycoprotein depletion. In vivo, CR3 showed differences in tissue tropism compared to MNV-1 by replicating in the large intestine. Mapping of a glycan-binding site in the MNV-1 capsid by reverse genetics identified a region topologically similar to the histo-blood group antigen (HBGA)-binding sites of the human norovirus strain VA387. The recombinant virus showed distinct changes in tissue tropism compared to wild-type virus. Taken together, our data demonstrate that MNV strains evolved multiple strategies to bind different glycan receptors on the surface of murine macrophages and that glycan binding contributes to tissue tropism in vivo.

The VP8* Domain of Neonatal Rotavirus Strain G10P[11] Binds to Type II Precursor Glycans

Journal of Virology, 2013

Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES http://jvi.asm.org/content/87/13/7255#ref-list-1 at: This article cites 37 articles, 18 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to: on June 13, 2014 by guest http://jvi.asm.org/ Downloaded from on June 13, 2014 by guest

Novel Structural Insights into Rotavirus Recognition of Ganglioside Glycan Receptors

Journal of Molecular Biology, 2011

Rotaviruses ubiquitously infect children under the age of 5, being responsible for more than half a million diarrhoeal deaths each year worldwide. Host cell oligosaccharides containing sialic acid(s) are critical for attachment by rotaviruses. However, to date, no detailed three-dimensional atomic model showing the exact rotavirus interactions with these glycoconjugate receptors has been reported. Here, we present the first crystallographic structures of the rotavirus carbohydrate-recognizing protein VP8 ⁎ in complex with ganglioside G M3 glycans. In combination with assessment of the inhibition of rotavirus infectivity by N-acetyl and Nglycolyl forms of this ganglioside, our results reveal key details of rotavirusganglioside G M3 glycan recognition. In addition, they show a direct correlation between the carbohydrate specificities exhibited by VP8 ⁎ from porcine and by monkey rotaviruses and the respective infectious virus particles. These novel results also indicate the potential binding interactions of rotavirus VP8 ⁎ with other sialic acid-containing gangliosides.

NMR Experiments Shed New Light on Glycan Recognition by Human and Murine Norovirus Capsid Proteins

Viruses, 2021

Glycan–protein interactions are highly specific yet transient, rendering glycans ideal recognition signals in a variety of biological processes. In human norovirus (HuNoV) infection, histo-blood group antigens (HBGAs) play an essential but poorly understood role. For murine norovirus infection (MNV), sialylated glycolipids or glycoproteins appear to be important. It has also been suggested that HuNoV capsid proteins bind to sialylated ganglioside head groups. Here, we study the binding of HBGAs and sialoglycans to HuNoV and MNV capsid proteins using NMR experiments. Surprisingly, the experiments show that none of the norovirus P-domains bind to sialoglycans. Notably, MNV P-domains do not bind to any of the glycans studied, and MNV-1 infection of cells deficient in surface sialoglycans shows no significant difference compared to cells expressing respective glycans. These findings redefine glycan recognition by noroviruses, challenging present models of infection.

Insight into Host Cell Carbohydrate-recognition by Human and Porcine Rotavirus from Crystal Structures of the Virion Spike Associated Carbohydrate-binding Domain (VP8*)

Journal of Molecular Biology, 2007

Rotavirus infection leads to the death of half a million children annually. The exact specifics of interaction between rotavirus particles and host cells enabling invasion and infection have remained elusive. Host cell oligosaccharides are critical components, and their involvement aids the virus in cell-recognition and attachment, as well as dictation of the remarkable hostspecificity that rotaviruses demonstrate. Interaction between the rotavirus spike-protein carbohydrate-binding domain (VP8*) and cell surface oligosaccharides facilitate virus recognition of host cells and attachment. Rotaviruses are considered, controversially, to recognise vastly different carbohydrate structures and either with incorporation of terminal sialic acid or without, as assessed by their ability to infect cells that have been pretreated with sialidases. Herein, the X-ray crystallographic structures of VP8* from the sialidase insensitive Wa and the sialidase sensitive CRW-8 rotavirus strains that cause debilitating gastroenteritis in human and pig are reported. Striking differences are apparent regarding recognition of the sialic acid derivative methyl α-D-N-acetylneuraminide, presenting the first experimental evidence of the inability of the human rotavirus strain to bind this monosaccharide, that correlates with Wa and CRW-8 recognising sialidase-resistant and sialidase-sensitive receptors, respectively. Identified are structural features that provide insight in attainment of substrate specificity exhibited by porcine strains as compared to rhesus rotavirus. Revealed in the CRW-8 VP8* structure is an additional bound ligand that intriguingly, is within a cleft located equivalent to the carbohydrate-binding region of galectins, and is suggestive of a new region for interaction with cell-surface carbohydrates. This novel result and detailed comparison of our representative sialidase-sensitive CRW-8 and insensitive Wa VP8* structures with those reported leads to our hypothesis that this groove is used for binding carbohydrates, and that for the human strains, as for other sialidaseinsensitive strains could represent a major oligosaccharide-binding region.