Mechanism of genome transcription in segmented dsRNA viruses (original) (raw)
Related papers
2020
The role of the RNAi/Dicer/Ago system to degrade RNA viruses has been elusive in mammals, which prompted authors to think that interferon (IFN) synthesis is essential in this clade relegating the RNAi defense strategy against viral infection as accessory function. We explore the theoretical possibilities that RNAi triggered by SARS-CoV-2 might degrade some host transcripts in the opposite direction although this hypothesis seems counter intuitive. SARS-CoV-2 genome was therefore computational searched for exact intra pairing within the viral RNA and also hybrid exact pairing with human transcriptome over a minimum 20 bases length. Minimal segments of 20 bases length of SARS-CoV-2 RNA were found based on the theoretical matching with existing complementary strands in the human host transcriptome. Few human genes potentially annealing with SARS-CoV-2 RNA, among them mitochondrial deubiquitinase USP30, a subunit of ubiquitin protein ligase complex FBXO21 along with two long coding RNAs...
The Molecular Biology of Coronaviruses
Advances in Virus Research, 1983
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Scientific Reports
Middle East respiratory syndrome coronavirus (MERS-CoV) has evolved to navigate through the sophisticated network of a host's immune system. The immune evasion mechanism including type 1 interferon and protein kinase R-mediated antiviral stress responses has been recently attributed to the involvement of MERS-CoV protein 4a (p4a) that masks the viral dsRNA. However, the structural mechanism of how p4a recognizes and establishes contacts with dsRNA is not well explained. In this study, we report a dynamic mechanism deployed by p4a to engage the viral dsRNA and make it unavailable to the host immune system. Multiple variants of p4a-dsRNA were created and investigated through extensive molecular dynamics procedures to highlight crucial interfacial residues that may be used as potential pharmacophores for future drug development. The structural analysis revealed that p4a exhibits a typical αβββα fold structure, as found in other dsRNA-binding proteins. The α1 helix and the β1-β2 loop play a crucial role in recognizing and establishing contacts with the minor grooves of dsRNA. Further, mutational and binding free energy analyses suggested that in addition to K63 and K67, two other residues, K27 and W45, might also be crucial for p4a-dsRNA stability.
Regulation of Transcription of Coronaviruses
Advances in Experimental Medicine and Biology, 1995
To study factors involved in regulation of transcription of coronaviruses, we constructed defective interfering (DI) RNAs containing sg RNA promoters at multiple positions. Analysis of the amounts of sg DI RNA produced by these DIs resulted in the following observations: (i) a downstream promoter downregulates an upstream promoter; (ii) an upstream promoter has little or no effect on the activity of a downstream promoter. Our data suggest that attenuation of upstream promoter activities by downstream promoter sequences plays an important role in regulating the amounts of sg RNAs produced by coronaviruses. Our observations are in accordance with the models proposed by Konings et al. (8) and Sawicki and Sawicki (16). Coronaviruses produce a 3'-coterminal nested set of subgenomic (sg) mRNAs. All sg mRNAs contain a common leader sequence derived from the 5' end of the genome. For mouse hepatitis virus MHV this leader sequence is 72 nucleotides (nt) in length (20). The joining of the 5' leader RNA to the mRNA is believed to be a discontinuous transcription process (10,19), since the results of UV transcription mapping argue against RNA splicing (5,23). On the genome the transcription units for the mRNAs are preceded by the intergenic sequence (IS) (10,19). For MHV every IS contains a sequence element related to the consensus 5' AAUCUAAAC 3' (2,8,18). These IS elements function, on the negative stranded RNA template, as promoters for sg mRNA synthesis (14,22). On the negative strand the IS promoter elements are called intergenic promoter sequence (IPS). The mechanism of coronavirus sg mRNA synthesis is a subject of considerable debate. In earlier experiments only genome length negative strands were found (11) and it was believed that genomic negative strands were the exclusive templates for the synthesis ofsg mRNAs. To explain the synthesis ofleader containing sg mRNAs, it has been proposed that short leader RNA species act as primers (9,20). According to this leader-primed
A prenylated dsRNA sensor protects against severe COVID-19
Science, 2021
The bat connection The heterogeneity of COVID-19 makes it challenging to predict the course of infection in an individual. Upon virus infection, interferons (IFNs) generate the initial signals for cellular defenses. Knowing that defects in IFN signaling are associated with more severe COVID-19, Wickenhagen et al . used IFN-stimulated gene expression screening on human lung cells from which they identified a gene for 2′-5′-oligoadenylate synthetase 1 (OAS1) (see the Perspective by Schoggins). OAS1 stimulates RNase L to inhibit the virus with a surprising degree of specificity, targeting the membranous organelles in which it replicates. In most mammals, OAS1 is attached to membranes by a prenyl group. However, billions of humans do not have the prenylated OAS1 haplotype, including many experiencing severe COVID-19. The same is true for horseshoe bats, prolific sources of betacoronaviruses, because of an ancient retrotransposition event. —CA
Identification of a Coronavirus Transcription Enhancer
Journal of Virology, 2008
Coronavirus (CoV) transcription includes a discontinuous mechanism during the synthesis of subgenome-length minus-strand RNAs leading to a collection of mRNAs in which the 5 terminal leader sequence is fused to contiguous genome sequences. It has been previously shown that transcriptionregulating sequences (TRSs) preceding each gene regulate transcription. Base pairing between the leader TRS (TRS-L) and the complement of the body TRS (cTRS-B) in the nascent RNA is a determinant factor during CoV transcription. In fact, in transmissible gastroenteritis CoV, a good correlation has been observed between subgenomic mRNA (sg mRNA) levels and the free energy (⌬G) of TRS-L and cTRS-B duplex formation. The only exception was sg mRNA N, the most abundant sg mRNA during viral infection in spite of its minimum ⌬G associated with duplex formation. We postulated that additional factors should regulate transcription of sg mRNA N. In this report, we have described a novel transcription regulation mechanism operating in CoV by which a 9-nucleotide (nt) sequence located 449 nt upstream of the N gene TRS core sequence (CS-N) interacts with a complementary sequence just upstream of CS-N, specifically increasing the accumulation of sg mRNA N. Alteration of this complementarity in mutant replicon genomes showed a correlation between the predicted stability of the base pairing between 9-nt sequences and the accumulation of sg mRNA N. This interaction is exclusively conserved in group 1a CoVs, the only CoV subgroup in which the N gene is not the most 3 gene in the viral genome. This is the first time that a long-distance RNA-RNA interaction regulating transcriptional activity specifically enhancing the transcription of one gene has been described to occur in CoVs.
Gene expression, virulence and vaccine development in coronaviruses
Journal of Biotechnology, 2008
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Frontiers in Genetics, 2022
Despite what we know so far, Covid-19, caused by SARS-CoV-2 virus, remains a pandemic that still require urgent healthcare intervention. The frequent mutations of the SARS-CoV-2 virus has rendered disease control with vaccines and antiviral drugs quite challenging, with newer variants surfacing constantly. There is therefore the need for newer, effective and efficacious drugs against coronaviruses. Considering the central role of RNA dependent, RNA polymerase (RdRp) as an enzyme necessary for the virus life cycle and its conservation among coronaviruses, we investigated potential host miRNAs that can be employed as broad-range antiviral drugs averse to coronaviruses, with particular emphasis on BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2. miRNAs are small molecules capable of binding mRNA and regulate expression at transcriptional or translational levels. Our hypothesis is that host miRNAs have the potential of blocking coronavirus replication through miRNA-RdRp mRNA interaction. To investigate this, we retrieved the open reading frame (ORF1ab) nucleotide sequences and used them to interrogate miRNA databases for miRNAs that can bind them. We employed various bioinformatics tools to predict and identify the most effective host miRNAs. In all, we found 27 miRNAs that target RdRp mRNA sequence of multiple coronaviruses, of which three - hsa-miR-1283, hsa-miR-579-3p, and hsa-miR-664b-3p target BCoV, SARS-CoV and SARS-CoV-2. Additionally, hsa-miR-374a-5p has three bovine miRNA homologs viz bta-miR-374a, bta-miR-374b, and bta-miR-374c. Inhibiting the expression of RdRp enzyme via non-coding RNA is novel and of great therapeutic importance in the control of coronavirus replication, and could serve as a broad-spectrum antiviral, with hsa-miR-1283, hsa-miR-579-3p, and hsa-miR-664b-3p as highly promising.