The discovery of proteases and intramembrane proteolysis (original) (raw)

Proteolysis to Identify Protease Substrates: Cleave to Decipher

Proteomics, 2018

Proteolysis is an irreversible post-translational modification process, characterized by highly precise yet stable cleavage of proteins. Downstream events in signaling processes are reliant on proteolysis triggered by the protease activity. Studies indicate that abnormal proteolytic activity may lead to the manifestation of diseased conditions. Therefore, characterization of proteases may provide clues to understand their role in fundamental cellular processes like cellular growth, differentiation, apoptosis, and survival. The relevance of proteases and their substrates as clinical targets are being studied. Understanding of the mechanism of proteolytic activity, the identity and role of repertoire of its substrates in a physiological pathway has opened avenues for novel drug designing. However, only a limited knowledge of protease substrates is currently available. In this review, we recapitulate the library screening, proteomics and bioinformatics based approaches that have been employed for identification of protease substrates.

Cell membrane-bound proteases: not "only" proteolysis

Physiological research / Academia Scientiarum Bohemoslovaca, 1996

Ectopeptidases are widely distributed among various cell systems. Their expression on an appropriate cell type is finely regulated, reflecting the specific functional cell implications and engagement in defined physiological pathways. Protein turnover, ontogeny, inflammation, tissue remodelling, cell migration and tumor invasion are among the many physiological and pathological events in which cell-surface proteases play a crucial role, both as effector as well as regulatory molecules. It has recently become clear that also non-catalytic effects of membrane-bound proteases are of great importance in some biological regulations. They may generate specific signal transduction intracellularly, after reacting with certain target molecules. They may also play a pivotal role in cell-cell and cell-virus contact and recognition, as well as in binding to the extracellular matrix. This short review provides some insight into the multifunctional mechanisms attributed to cell membrane-bound pro...

Proteases as therapeutics

Biochemical Journal, 2011

Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, o...

Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases

Embo Journal, 2005

Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, c-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.

Proteases: Pivot Points in Functional Proteomics

Functional Proteomics, 2018

Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration and bacterial self-defense.

Protease signalling: the cutting edge

The EMBO Journal, 2012

Protease research has undergone a major expansion in the last decade, largely due to the extremely rapid development of new technologies, such as quantitative proteomics and in-vivo imaging, as well as an extensive use of in-vivo models. These have led to identification of physiological substrates and resulted in a paradigm shift from the concept of proteases as protein-degrading enzymes to proteases as key signalling molecules. However, we are still at the beginning of an understanding of protease signalling pathways. We have only identified a minor subset of true physiological substrates for a limited number of proteases, and their physiological regulation is still not well understood. Similarly, links with other signalling systems are not well established. Herein, we will highlight current challenges in protease research.

General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases

Cell chemical biology, 2017

Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the ketoamide nitrogen by hydrophobic groups are potent rhomboid inhibitors active in the nanomolar range, surpassing the currently used rhomboid inhibitors by up to three orders of magnitude. Such peptidyl ketoamides show selectivity for rhomboids, leaving most human serine hydrolases unaffected. Crystal structures show that these compounds bind the active site of rhomboid covalently and in a substrate-like manner, and kinetic analysis reveals their reversible, slow-binding, non-competitive mechanism. Since ketoamides are clinically used pharmacophores, our findings uncover a straightforward m...