PyQMC: An all-Python real-space quantum Monte Carlo module in PySCF (original) (raw)
Abstract
We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (82)
- S. Lebègue, T. Björkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, "Two-Dimensional Materials from Data Filtering and Ab Initio Calculations," Physical Review X 3, 031002 (2013).
- S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. San- vito, and O. Levy, "The high-throughput highway to computa- tional materials design," Nature Materials 12, 191-201 (2013).
- J.-B. Morée, M. Hirayama, M. T. Schmid, Y. Yamaji, and M. Imada, "Ab initio low-energy effective Hamil- tonians for high-temperature superconducting cuprates Bi 2 Sr 2 CuO 6 , Bi 2 Sr 2 CaCu 2 O 8 and CaCuO 2 ," (2022), 10.48550/arXiv.2206.01510. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0139024 Accepted to J. Chem. Phys. 10.1063/5.0139024
- K. Choudhary, I. Kalish, R. Beams, and F. Tavazza, "High-throughput Identification and Characterization of Two- dimensional Materials using Density functional theory," Scientific Reports 7, 5179 (2017).
- N. P. Wilson, W. Yao, J. Shan, and X. Xu, "Excitons and emer- gent quantum phenomena in stacked 2D semiconductors," Na- ture 599, 383-392 (2021).
- A. Gali, "Ab initio theory of the nitrogen-vacancy center in dia- mond," Nanophotonics 8, 1907-1943 (2019).
- C. E. Dreyer, A. Alkauskas, J. L. Lyons, A. Janotti, and C. G. Van de Walle, "First-principles calculations of point de- fects for quantum technologies," Annual Review of Materials Re- search 48, 1-26 (2018), https://doi.org/10.1146/annurev-matsci- 070317-124453.
- R. Adler, C.-J. Kang, C.-H. Yee, and G. Kotliar, "Correlated materials design: prospects and challenges," Reports on Progress in Physics 82, 012504 (2018).
- W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, "Quantum Monte Carlo simulations of solids," Reviews of Mod- ern Physics 73, 33-83 (2001).
- R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Elec- trons (Cambridge University Press, 2016).
- L. K. Wagner and D. M. Ceperley, "Discovering correlated fermions using quantum Monte Carlo," Reports on Progress in Physics 79, 094501 (2016).
- R. J. Needs, M. D. Towler, N. D. Drummond, P. López Ríos, and J. R. Trail, "Variational and diffusion quantum Monte Carlo calculations with the CASINO code," The Journal of Chemical Physics 152, 154106 (2020).
- S. Pilati, E. M. Inack, and P. Pieri, "Self-learning projective quantum monte carlo simulations guided by restricted boltzmann machines," Phys. Rev. E 100, 043301 (2019).
- D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C. Foulkes, "Ab initio solution of the many-electron schrödinger equation with deep neural networks," Phys. Rev. Research 2, 033429 (2020).
- A. Acevedo, M. Curry, S. H. Joshi, B. Leroux, and N. Malaya, "Vandermonde wave function ansatz for improved variational monte carlo," in 2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS) (2020) pp. 40-47.
- J. Hermann, Z. Schätzle, and F. Noé, "Deep-neural-network so- lution of the electronic Schrödinger equation," Nature Chemistry 12, 891-897 (2020).
- X. Li, Z. Li, and J. Chen, "Ab initio calculation of real solids via neural network ansatz," arXiv:2203.15472 [cond-mat, physics:physics] (2022).
- M. Wilson, N. Gao, F. Wudarski, E. Rieffel, and N. M. Tub- man, "Simulations of state-of-the-art fermionic neural network wave functions with diffusion Monte Carlo," arXiv:2103.12570 [physics, physics:quant-ph] (2021).
- J. A. R. Shea and E. Neuscamman, "Size Consistent Excited States via Algorithmic Transformations between Variational Principles," Journal of Chemical Theory and Computation 13, 6078-6088 (2017).
- M. Dash, J. Feldt, S. Moroni, A. Scemama, and C. Filippi, "Ex- cited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Ge- ometries," Journal of Chemical Theory and Computation 15, 4896-4906 (2019).
- L. Otis, I. M. Craig, and E. Neuscamman, "A hybrid approach to excited-state-specific variational Monte Carlo and doubly excited states," The Journal of Chemical Physics 153, 234105 (2020).
- L. N. Tran and E. Neuscamman, "Improving Excited-State Po- tential Energy Surfaces via Optimal Orbital Shapes," The Jour- nal of Physical Chemistry A 124, 8273-8279 (2020).
- J. Feldt and C. Filippi, "Excited-state calculations with quantum Monte Carlo," (2020).
- M. Dash, S. Moroni, C. Filippi, and A. Scemama, "Tailoring CIPSI Expansions for QMC Calculations of Electronic Excita- tions: The Case Study of Thiophene," Journal of Chemical The- ory and Computation 17, 3426-3434 (2021).
- S. Pathak, B. Busemeyer, J. N. B. Rodrigues, and L. K. Wag- ner, "Excited states in variational Monte Carlo using a penalty method," The Journal of Chemical Physics 154, 034101 (2021).
- J. T. Krogel, M. Yu, J. Kim, and D. M. Ceperley, "Quantum energy density: Improved efficiency for quantum Monte Carlo calculations," Physical Review B 88, 035137 (2013).
- K. Ryczko, J. T. Krogel, and I. Tamblyn, "Machine Learning Dif- fusion Monte Carlo Energy Densities," arXiv:2205.04547 [cond- mat] (2022).
- L. K. Wagner, "Types of single particle symmetry break- ing in transition metal oxides due to electron correla- tion," The Journal of Chemical Physics 138, 094106 (2013), https://doi.org/10.1063/1.4793531.
- H. J. Changlani, H. Zheng, and L. K. Wagner, "Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions," The Journal of Chemical Physics 143, 102814 (2015).
- H. Zheng, H. J. Changlani, K. T. Williams, B. Busemeyer, and L. K. Wagner, "From Real Materials to Model Hamiltonians With Density Matrix Downfolding," Frontiers in Physics 6, 43 (2018).
- Y. Chang and L. K. Wagner, "Effective spin-orbit models us- ing correlated first-principles wave functions," Physical Review Research 2, 013195 (2020).
- A. Zen, S. Sorella, M. J. Gillan, A. Michaelides, and D. Alfè, "Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step," Phys. Rev. B 93, 241118 (2016).
- T. A. Anderson and C. J. Umrigar, "Nonlocal pseudopotentials and time-step errors in diffusion Monte Carlo," The Journal of Chemical Physics 154, 214110 (2021).
- J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Ben- nett, M. A. Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, S. Chiesa, B. K. Clark, R. C. Clay, K. T. De- laney, M. Dewing, K. P. Esler, H. Hao, O. Heinonen, P. R. C. Kent, J. T. Krogel, I. Kylänpää, Y. W. Li, M. G. Lopez, Y. Luo, F. D. Malone, R. M. Martin, A. Mathuriya, J. McMinis, C. A. Melton, L. Mitas, M. A. Morales, E. Neuscamman, W. D. Parker, S. D. P. Flores, N. A. Romero, B. M. Rubenstein, J. A. R. Shea, H. Shin, L. Shulenburger, A. F. Tillack, J. P. Townsend, N. M. Tubman, B. V. D. Goetz, J. E. Vincent, D. C. Yang, Y. Yang, S. Zhang, and L. Zhao, "QMCPACK: an open source ab ini- tio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids," Journal of Physics: Condensed Matter 30, 195901 (2018).
- K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Ca- sula, E. Coccia, M. Dagrada, C. Genovese, Y. Luo, G. Mazzola, A. Zen, and S. Sorella, "TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo," The Journal of Chemical Physics 152, 204121 (2020).
- C. Umrigar, "Cornell Holland Abinitio Materials Package - CHAMP," https://cyrus.lassp.cornell.edu/champ.
- B. L. Hammond, W. A. Lester, and P. J. Reynolds, "Monte Carlo Methods in Ab Initio Quantum Chemistry," World Scientific Lecture and Course Notes in Chemistry, 1 (1994), 10.1142/1170.
- M. P. Nightingale and C. J. Umrigar, Quantum Monte Carlo Methods in Physics and Chemistry (Springer Science & Business Media, 1998).
- I. Prigogine and S. A. Rice, New Methods in Computational Quantum Mechanics, Volume 93 (John Wiley & Sons, 2009).
- J. Kolorenč and L. Mitas, "Applications of quantum Monte Carlo methods in condensed systems," Reports on Progress in Physics 74, 026502 (2011).
- B. M. Austin, D. Y. Zubarev, and W. A. Lester, "Quantum Monte Carlo and Related Approaches," Chemical Reviews 112, 263-288 (2012).
- J. Toulouse, R. Assaraf, and C. J. Umrigar, "Chapter Fifteen - Introduction to the Variational and Diffusion Monte Carlo Meth- ods," in Advances in Quantum Chemistry, Electron Correlation in Molecules -Ab Initio Beyond Gaussian Quantum Chemistry, Vol. 73, edited by P. E. Hoggan and T. Ozdogan (Academic Press, 2016) pp. 285-314.
- S. Yuan, Y. Chang, and L. K. Wagner, "Quantifica- tion of electron correlation for approximate quantum calcula- tions," The Journal of Chemical Physics 157, 194101 (2022), https://doi.org/10.1063/5.0119260.
- L. K. Wagner and L. Mitas, "Energetics and dipole moment of transition metal monoxides by quantum Monte Carlo," The Jour- nal of Chemical Physics 126, 034105-034105-5 (2007).
- C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, "Optimized trial wave functions for quantum Monte Carlo calculations," Phys. Rev. Lett. 60, 1719-1722 (1988).
- S. Sorella, M. Casula, and D. Rocca, "Weak binding between two aromatic rings: Feeling the van der Waals attraction by quantum Monte Carlo methods," The Journal of Chemical Physics 127, 014105 (2007), https://doi.org/10.1063/1.2746035.
- L. K. Wagner, M. Bajdich, and L. Mitas, "QWalk: A quan- tum Monte Carlo program for electronic structure," Journal of Computational Physics 228, 3390-3404 (2009).
- L. Mitáš, E. L. Shirley, and D. M. Ceperley, "Nonlocal pseudopo- tentials and diffusion Monte Carlo," The Journal of Chemical Physics 95, 3467-3475 (1991), https://doi.org/10.1063/1.460849.
- W. L. McMillan, "Ground state of liquid He 4 ," Phys. Rev. 138, A442-A451 (1965).
- C. Lin, F. H. Zong, and D. M. Ceperley, "Twist-averaged bound- ary conditions in continuum quantum Monte Carlo algorithms," Phys. Rev. E 64, 016702 (2001).
- S. Chiesa, D. Ceperley, R. Martin, and M. Holzmann, "Finite- Size Error in Many-Body Simulations with Long-Range In- teractions," Physical Review Letters 97 (2006), 10.1103/Phys- RevLett.97.076404.
- S. Pathak and L. K. Wagner, "A light weight regular- ization for wave function parameter gradients in quan- tum Monte Carlo," AIP Advances 10, 085213 (2020), https://doi.org/10.1063/5.0004008.
- S. Sorella, "Green function monte carlo with stochastic reconfig- uration," Phys. Rev. Lett. 80, 4558-4561 (1998).
- M. Casula and S. Sorella, "Geminal wave functions with Jastrow correlation: A first application to atoms," The Journal of Chemical Physics 119, 6500-6511 (2003), https://doi.org/10.1063/1.1604379.
- A. J. Williamson, R. Q. Hood, R. J. Needs, and G. Rajagopal, "Diffusion quantum Monte Carlo calculations of the excited states of silicon," Physical Review B 57, 12140-12144 (1998).
- K. K. Docken and J. Hinze, "LiH potential curves and wavefunctions for X 1Σ+, A 1Σ+, B 1Π, 3Σ+, and 3Π," The Journal of Chemical Physics 57, 4928-4936 (1972), https://doi.org/10.1063/1.1678164.
- H. Werner and P. J. Knowles, "A second order multi- configuration SCF procedure with optimum convergence," The Journal of Chemical Physics 82, 5053-5063 (1985), https://doi.org/10.1063/1.448627.
- F. Schautz and C. Filippi, "Optimized Jastrow-Slater wave func- tions for ground and excited states: Application to the lowest states of ethene," The Journal of Chemical Physics 120, 10931- 10941 (2004), https://doi.org/10.1063/1.1752881.
- C. Filippi, M. Zaccheddu, and F. Buda, "Absorption spec- trum of the green fluorescent protein chromophore: A diffi- cult case for ab initio methods?" Journal of Chemical The- ory and Computation 5, 2074-2087 (2009), pMID: 26613149, https://doi.org/10.1021/ct900227j.
- A. Cuzzocrea, A. Scemama, W. J. Briels, S. Moroni, and C. Fil- ippi, "Variational Principles in Quantum Monte Carlo: The Troubled Story of Variance Minimization," Journal of Chemical Theory and Computation 16, 4203-4212 (2020).
- I. Tobias, R. J. Fallon, and J. T. Vanderslice, "Potential energy curves for CO," The Journal of Chemical Physics 33, 1638-1640 (1960), https://doi.org/10.1063/1.1731475.
- G. Ortiz, D. M. Ceperley, and R. M. Martin, "New stochas- tic method for systems with broken time-reversal symmetry: 2d fermions in a magnetic field," Phys. Rev. Lett. 71, 2777-2780 (1993).
- R. Assaraf, M. Caffarel, and A. Khelif, "Diffusion Monte Carlo methods with a fixed number of walkers," Phys. Rev. E 61, 4566- 4575 (2000).
- M. Calandra Buonaura and S. Sorella, "Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers," Phys. Rev. B 57, 11446-11456 (1998).
- D. H. Davis, "Critical-size calculations for neutron systems by the Monte Carlo method," Lawrence Radiation Lab. Report No. UCRL-6707 (1961).
- M. Casula, "Beyond the locality approximation in the standard diffusion Monte Carlo method," Phys. Rev. B 74, 161102 (2006).
- L. Dalcín, R. Paz, and M. Storti, "MPI for Python," Journal of Parallel and Distributed Computing 65, 1108-1115 (2005).
- L. Dalcín, R. Paz, M. Storti, and J. D'Elía, "MPI for Python: Performance improvements and MPI-2 extensions," Journal of Parallel and Distributed Computing 68, 655-662 (2008).
- L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, "Parallel distributed computing using Python," Advances in Water Re- sources New Computational Methods and Software Tools, 34, 1124-1139 (2011).
- L. Dalcin and Y.-L. L. Fang, "mpi4py: Status Update After 12 Years of Development," Computing in Science & Engineering 23, 47-54 (2021).
- Message Passing Interface Forum, MPI: A Message-Passing In- terface Standard Version 4.0 (2021).
- Dask Development Team, Dask: Library for dynamic task scheduling (2016).
- R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, "CuPy: A NumPy-Compatible Library for NVIDIA GPU Calcu- lations," 31st Conference on Neural Information Processing Sys- tems (NIPS 2017), Long Beach, CA, USA. , 7 (2017).
- M. C. Bennett, C. A. Melton, A. Annaberdiyev, G. Wang, L. Shu- lenburger, and L. Mitas, "A new generation of effective core potentials for correlated calculations," The Journal of Chemical Physics 147, 224106 (2017).
- A. Annaberdiyev, G. Wang, C. A. Melton, M. C. Bennett, L. Shu- lenburger, and L. Mitas, "A new generation of effective core po- tentials from correlated calculations: 3d transition metal series," The Journal of Chemical Physics 149, 134108 (2018).
- Y. Chang and L. K. Wagner, "Learning emergent models from textitabInitio\textit{ab Initio}textitabInitio many-body calculations," (2023), arXiv:2302.02899 [cond-mat].
- 77 Opensource.org, "https://opensource.org/licenses/MIT," Ac- cessed 4 November 2022.
- SPDX Workgroup a Linux Foundation Project, "https://spdx. org/licenses/MIT.html," (2018), accessed 4 November 2022.
- J. H. Saltzer, "The origin of the "MIT License"," IEEE Annals of the History of Computing 42, 94-98 (2020).
- C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerk- wijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peter- son, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, "Array programming with NumPy," Nature 585, 357-362 (2020).
- P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber- land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Van- derPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python," Nature Methods 17, 261-272 (2020).
- A. Collette, HDF5 for Python (2008).