The Antihypertensive Drug Carvedilol Inhibits the Activity of Mitochondrial NADH-Ubiquinone Oxidoreductase (original) (raw)
Related papers
Are the Antioxidant Properties of Carvedilol Important for the Protection of Cardiac Mitochondria?
Current Vascular Pharmacology, 2005
The cellular role of mitochondria includes ATP generation and the modulation of cytosolic calcium signals, besides being the "crossroads" for several cell death pathways. The maintenance of optimal mitochondrial functioning during the disease process increases the chances for survival. For example, ischaemia followed by reperfusion is known to negatively affect mitochondrial function, namely by inducing a deleterious condition called mitochondrial permeability transition (MPT). The MPT is responsible for mitochondrial dysfunction and can ultimately lead to cell death. Therefore, it seems important to protect mitochondrial function in cardiac disease. Carvedilol, a β-adrenergic receptor antagonist with antioxidant properties, has a positive impact on cardiac mitochondria during in vitro, ex-vivo and in vivo models of cardiac dysfunction. Particularly, carvedilol was shown to inhibit MPT in isolated heart mitochondria and protect mitochondria against the oxidative damage induced by the xanthine oxidase / hypoxanthine pro-oxidant system. The observation that carvedilol acts as an inhibitor of mitochondrial complex-I is also of importance, since this mitochondrial system was proposed as cause of the cardiotoxicity associated with the antineoplasic drug doxorubicin. This review points out the major findings concerning the positive impact of carvedilol on mitochondrial function and its use in the treatment of myocardial diseases where oxidative stress is known to be involved.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2007
Carvedilol, a β-adrenoreceptor antagonist with strong antioxidant activity, produces a high degree of cardioprotection in a variety of experimental models of ischemic cardiac injury. Although growing evidences suggest specific effects on mitochondrial metabolism, how carvedilol would exert its overall activity has not been completely disclosed. In the present work we have investigated the impact of carvediloltreatment on mitochondrial bioenergetic functions and ROS metabolism in H9C2 cells. This analysis has revealed a dose-dependent decrease in respiratory fluxes by NAD-dependent substrates associated with a consistent decline of mitochondrial complex I activity. These changes were associated with an increase in mitochondrial H 2 O 2 production, total glutathione and protein thiols content. To evaluate the antioxidant activity of carvedilol, the effect of the exposure of control and carvedilol-pretreated H9C2 cells to H 2 O 2 were investigated. The H 2 O 2 -mediated oxidative insult resulted in a significant decrease of mitochondrial respiration, glutathione and protein thiol content and in an increased level of GSSG. These changes were prevented by carvedilol-pretreatment. A similar protective effect on mitochondrial respiration could be obtained by pretreatment of the cells with a sub-saturating amount of rotenone, a complex I inhibitor.
Effects of Carvedilol on Isolated Heart Mitochondria: Evidence for a Protonophoretic Mechanism
Biochemical and Biophysical Research Communications, 2000
for the treatment of congestive heart failure, mild to moderate hypertension, and myocardial infarction. Carvedilol was also shown to protect cardiac mitochondria from oxidative stress events. Because mitochondria are the main suppliers of ATP for cardiac muscle work, a study of the effects of carvedilol in mitochondrial bioenergetics is necessary to fully understand the basis of its protective role in myocardial energetics. In this work we show that carvedilol acts as an uncoupler of oxidative phosphorylation, decreasing mitochondrial electric potential (⌬⌿) by a weak protonophoretic mechanism. Theoretical studies were carried out to determine the relevance of conformation and proton affinity of the protonable amino side-chain group in the protonshuttling activity across the inner mitochondrial membrane. BM910228, a hydroxylated metabolite of carvedilol, was also studied for comparison with the parent compound. Implications for the protective role of carvedilol in heart mitochondrial bioenergetics are discussed.
Biochemical Pharmacology, 2001
Carvedilol, a non-selective -adrenoreceptor blocker, has been shown to possess a high degree of cardioprotection in experimental models of myocardial damage. Reactive oxygen species have been proposed to be implicated in such situations, and antioxidants have been demonstrated to provide partial protection to the reported damage. The purpose of our study was to investigate the antioxidant effect of carvedilol and its metabolite BM-910228 by measuring the extent of lipid peroxidation in a model of severe oxidative damage induced by ADP/FeSO 4 in isolated rat heart mitochondria. Carvedilol and BM-910228 inhibited the thiobarbituric acid-reactive substance formation and oxygen consumption associated with lipid peroxidation with IC 50 values of 6 and 0.22 M, respectively. Under the same conditions, the IC 50 values of ␣-tocopheryl succinate and Trolox were 125 and 31 M, respectively. As expected, the presence of carvedilol and BM-910228 preserved the structural and functional integrity of mitochondria under oxidative stress conditions for the same concentration range shown to inhibit lipid peroxidation, since they prevented the collapse of the mitochondrial membrane potential (⌬⌿) induced by ADP/FeSO 4 in respiring mitochondria. It should be stressed that neither carvedilol nor BM-910228 induced any toxic effect on mitochondrial function in the concentration range of the compounds that inhibits the peroxidation of mitochondrial membranes. In conclusion, the antioxidant properties of carvedilol may contribute to the cardioprotective effects of the compound, namely through the preservation of mitochondrial functions whose importance in myocardial dysfunction is clearly documented. Additionally, its hydroxylated analog BM-910220, with its notably superior antioxidant activity, may significantly contribute to the therapeutic effects of carvedilol.
Toxicology and Applied Pharmacology, 2004
The cardiotoxicity associated with doxorubicin (DOX) therapy limits the total cumulative dose and therapeutic success of active anticancer chemotherapy. Cardiac mitochondria are implicated as primary targets for DOX toxicity, which is believed to be mediated by the generation of highly reactive free radical species of oxygen from complex I of the mitochondrial electron transport chain. The objective of this study was to determine if the protection demonstrated by carvedilol (CV), a h-adrenergic receptor antagonist with strong antioxidant properties, against DOX-induced mitochondrial-mediated cardiomyopathy [Toxicol. Appl. Pharmacol. 185 (2002) 218] is attributable to its antioxidant properties or its h-adrenergic receptor antagonism. Our results confirm that DOX induces oxidative stress, mitochondrial dysfunction, and histopathological lesions in the cardiac tissue, all of which are inhibited by carvedilol. In contrast, atenolol (AT), a hadrenergic receptor antagonist lacking antioxidant properties, preserved phosphate energy charge but failed to protect against any of the indexes of DOX-induced oxidative mitochondrial toxicity. We therefore conclude that the cardioprotective effects of carvedilol against DOXinduced mitochondrial cardiotoxicity are due to its inherent antioxidant activity and not to its h-adrenergic receptor antagonism. D
Carvedilol protects ischemic cardiac mitochondria by preventing oxidative stress
Revista portuguesa de cardiologia : orgão oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology, 2004
Ischemia negatively affects mitochondrial function by inducing the mitochondrial permeability transition (MPT). The MPT is triggered by oxidative stress, which occurs in mitochondria during ischemia as a result of diminished antioxidant defenses and increased reactive oxygen species production. It causes mitochondrial dysfunction and can ultimately lead to cell death. Therefore, drugs able to minimize mitochondrial damage induced by ischemia may prove to be clinically effective. We analyzed the effect of carvedilol, a beta-blocker with antioxidant properties, on mitochondrial dysfunction. Carvedilol decreased levels of TBARS (thiobarbituric acid reactive substances), an indicator of oxidative stress, which is consistent with its antioxidant properties. Regarding cell death by apoptosis, although ischemia did increase caspase-8-like activity, there were no changes in caspase-3-like activity, which is activated downstream of caspase-8; this may indicate that the apoptotic cascade is n...
Drug-induced Cardiac Mitochondrial Toxicity and Protection: From Doxorubicin to Carvedilol
Current Pharmaceutical Design, 2011
Mitochondria have long been involved in several cellular processes beyond its role in energy production. The importance of this organelle for cardiac tissue homeostasis has been greatly investigated and its impairment can lead to cell death and consequent organ failure. Several compounds have been described in the literature as having direct effects on cardiac mitochondria which can provide a mechanistic explanation for their toxicological or pharmacological effects. The present review describes one classic example of druginduced cardiac mitochondrial toxicity and another case of drug-induced mitochondrial protection. For the former, we present the case of doxorubicin, an anticancer agent whose treatment is associated with a cumulative and dose-dependent cardiomyopathy with a mitochondrial etiology. Following this, we present the case of carvedilol, a -blocker with intrinsic antioxidant activity, which has been described to protect cardiac mitochondria from oxidative injury. The final part of the review integrates information from the previous chapters, demonstrating how carvedilol can contribute to reduce doxorubicin toxicity on cardiac mitochondria. The two referred examples result in important take-home messages: a) drug-induced cardiac mitochondrial dysfunction is an important contributor for drug-associated organ failure, b) protection of mitochondrial function is involved in the beneficial impact of some clinically-used drugs and c) a more accurate prediction of toxic vs. beneficial effects should be an important component of drug development by the pharmaceutical industry.
European Journal of Pharmacology, 2001
The mitochondrial permeability transition is a widely studied, but poorly understood, phenomenon in mitochondrial bioenergetics. It has been recognised that this phenomenon is related to the opening of a protein pore in the inner mitochondrial membrane, and that opening of this pore is the cause of some forms of mitochondrial dysfunction. In this work, we propose that carvedilol, a multi-role cardioprotective compound, may act as an inhibitor of the high-conductance state of the mitochondrial permeability transition pore, a conclusion supported by the finding that carvedilol provides differential protection against mitochondrial swelling in sucrose and KCl-based media, and that it is unable to protect against calcium-induced depolarisation of the mitochondrial membrane. We also show that carvedilol inhibits the oxidation of mitochondrial thiol groups and that, beyond causing a slight depression of the membrane potential, it has no inhibitory effect on mitochondrial calcium uptake.A decrease in the number of oxidised protein thiol groups may be the main mechanism responsible for this selective inhibition of the permeability transition pore in heart mitochondria. These effects may be important for the role of carvedilol in some cardiac pathologies.
Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed
International Journal of Molecular Sciences
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, D...
PLOS ONE
Pulmonary hypertension (PH) increases the work of the right ventricle (RV) and causes right-sided heart failure. This study examined RV mitochondrial function and ADP transfer in PH animals advancing to right heart failure, and investigated a potential therapy with the specific β 1 -adrenergic-blocker metoprolol. Adult Wistar rats (317 ± 4 g) were injected either with monocrotaline (MCT, 60 mg kg -1 ) to induce PH, or with an equivalent volume of saline for controls (CON). At three weeks post-injection the MCT rats began oral metoprolol (10 mg kg -1 day -1-) or placebo treatment until heart failure was observed in the MCT group. Mitochondrial function was then measured using high-resolution respirometry from permeabilised RV fibres. Relative to controls, MCT animals had impaired mitochondrial function but maintained coupling between myofibrillar ATPases and mitochondria, despite an increase in ADP diffusion distances. Cardiomyocytes from the RV of MCT rats were enlarged, primarily due to an increase in myofibrillar protein. The ratio of mitochondria per myofilament area was decreased in both MCT groups (p � 0.05) in comparison to control (CON: 1.03 ± 0.04; MCT: 0.74 ± 0.04; MCT + BB: 0.74 ± 0.03). This not only implicates impaired energy production in PH, but also increases the diffusion distance for metabolites within the MCT cardiomyocytes, adding an additional hindrance to energy supply. Together, these changes may limit energy supply in MCT rat hearts, particularly at high cardiac workloads. Metoprolol treatment did not delay the onset of heart failure symptoms, improve mitochondrial function, or regress RV hypertrophy.