Electrical Detection of the Mechanical Alteration of Sickling Red Blood Cells within a Microfluidic Capillary Network (original) (raw)
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Combining microfluidic with sensors enables the development of smart analysis systems. Microelectrodes can be embedded within the microchannels network for electrical sensing, electrochemical analysis or impedance measurement. However, at the laboratory scale, the assembly between microfluidic network and electrical parts on the substrate remains an issue. This paper first discusses the principles of biosensing, and then proposes an original device integrating microfluidics with microelectrodes for the analysis of red blood cells transit in a structure mimicking micro-vascular flow. Some results concerning red blood cells discrimination of sickle cell disease are discussed with statistical analysis.
HAL (Le Centre pour la Communication Scientifique Directe), 2022
Thanks to their membrane elasticity and fluidity, red blood cells (RBCs) are capable to pass through the smallest microcapillaries while exchanging oxygen and CO2 with organs. For several blood disorders like sickle cells disease (SCD), RBCs lose their deformability leading to vaso-occlusions. To assess the deformability of RBC, successive mechanical stresses are applied in our device mimicking blood microcapillaries network, while RBCs circulating being monitored optically by microscopy. Normal and sickled RBCs behaviors are compared using such approach. This device could be a promising tool for the diagnostic of different blood disorders.
Scientific Reports, 2020
This paper describes the use of a microfluidic device comprising channels with dimensions mimicking those of the smallest capillaries found in the human microcirculation. The device structure, associated with a pair of microelectrodes, provides a tool to electrically measure the transit time of red blood cells through fine capillaries and thus generate an electrical signature for red blood cells in the context of human erythroid genetic disorders, such as sickle cell disease or hereditary spherocytosis, in which red cell elasticity is altered. Red blood cells from healthy individuals, heated or not, and red blood cells from patients with sickle cell disease or hereditary spherocytosis where characterized at a single cell level using our device. Transit time and blockade amplitude recordings were correlated with microscopic observations, and analyzed. The link between the electrical signature and the mechanical properties of the red blood cells is discussed in the paper, with greater...
Sickle cell disorder (SCD) is a multisystem disease with heterogeneous phenotypes. Although all patients have the mutated hemoglobin (Hb) in the SS phenotype, the severity and frequency of complications are variable. When exposed to low oxygen tension, the Hb molecule becomes dense and forms tactoids, which lead to the peculiar sickled shapes of the affected red blood cells, giving the disorder its name. This sickle cell morphology is responsible for the profound and widespread pathologies associated with this disorder, such as vaso-occlusive crisis (VOC). How much of the clinical manifestation is due to sickled erythrocytes and what is due to the relative contributions of other elements in the blood, especially in the microcapillary circulation, is usually not visualized and quantified for each patient during clinical management. Here, we used a microfluidic microcirculation mimetic (MMM), which has 187 capillary-like constrictions, to impose deformations on erythrocytes of 25 SCD patients, visualizing and characterizing the morpho-rheological properties of the cells in normoxic, hypoxic (using sodium meta-bisulfite) and treatment conditions (using hydroxyurea). The MMM enabled a patient-specific quantification of shape descriptors (circularity and roundness) and transit time through the capillary constrictions, which are readouts for morpho-rheological properties implicated in VOC. Transit times varied significantly (p < 0.001) between patients. Our results demonstrate the feasibility of microfluidics-based monitoring of individual patients for personalized care in the context of SCD complications such as VOC, even in resource-constrained settings.
Sickle cell disorder (SCD) is a multisystem disease with heterogeneous phenotypes. Although all patients have the mutated haemoglobin (Hb) in the SS phenotype, the severity and frequency of complications are variable. When exposed to low oxygen tension, the Hb molecule becomes dense and, forms tactoids which, lead to the peculiar sickled shapes of the affected red blood cells, giving the disorder its name. This sickle cell morphology is responsible for the profound and widespread pathologies associated with this disorder, such as vaso-occlusive crisis, (VOC). How much of the clinical manifestation is due to sickled erythrocytes and what is due to the relative contributions of other elements in the blood, especially in the microcapillary circulation, is usually not visualized and quantified for each patient during clinical management. Here, we used a microfluidic microcirculation mimetic (MMM) which has 187 capillary-like constrictions to impose deformations on erythrocytes of SCD pa...
Micromachines, 2018
Techniques, such as micropipette aspiration and optical tweezers, are widely used to measure cell mechanical properties, but are generally labor-intensive and time-consuming, typically involving a difficult process of manipulation. In the past two decades, a large number of microfluidic devices have been developed due to the advantages they offer over other techniques, including transparency for direct optical access, lower cost, reduced space and labor, precise control, and easy manipulation of a small volume of blood samples. This review presents recent advances in the development of microfluidic devices to evaluate the mechanical response of individual red blood cells (RBCs) and microbubbles flowing in constriction microchannels. Visualizations and measurements of the deformation of RBCs flowing through hyperbolic, smooth, and sudden-contraction microchannels were evaluated and compared. In particular, we show the potential of using hyperbolic-shaped microchannels to precisely co...
Scientific Reports
Microfluidic devices exploit combined physical, chemical and biological phenomena that could be unique in the sub-millimeter dimensions. The current goal of development of Point-of-Care (POC) medical devices is to extract the biomedical information from the blood. We examined the characteristics of blood flow in autonomous microfluidic devices with the aim to realize sensitive detection of interactions between particulate elements of the blood and the appropriately modified surfaces of the system. As a model experiment we demonstrated the fast analysis of the AB0 blood group system. We observed that the accumulation of red blood cells immobilized on the capillary wall leads to increased lateral movement of the flowing cells, resulting in the overall selective deceleration of the red blood cell flow column compared to the plasma fraction. We showed that by monitoring the flow rate characteristics in capillaries coated with blood type reagents it is possible to identify red blood cell types. Analysis of hydrodynamic effects governing blood flow by Finite Element Method based modelling supported our observations. Our proof-of-concept results point to a novel direction in blood analysis in autonomous microfluidic systems and also provide the basis for the construction of a simple quantitative device for blood group determination. Medical applications of microfluidic systems hold the promise of miniaturization and accelerated testing for biomarkers or cells. While classical assays of molecular biology and immunology can be scaled down for these systems, it is also of high interest to introduce novel principles taking advantage of the reduced dimensions and distinct physical phenomena observable on this scale. Since cells' dimensions are in the low micrometer range it seems intuitive to develop applications that utilize cells as components of the assay. We attempted to combine a self-driven microfluidic system and cell-molecule interactions in order to generate a simple but robust assay and readout system for Point-of-Care (POC) diagnostics. Here we provide proof-of-principle of the system using the human blood group markers as a model. Self-driven microfluidic devices are ideal for POC testing as they require no external power supply and are less prone to user-introduced error. Autonomous microfluidic devices exploit capillary forces for transferring liquid in the system 1. Key factors affecting the performance of these devices are structure/geometry and material composition. Capillary forces depend on the interactions of the fluid, the gas phase and the capillary wall. Geometries modulate the contact angle of the proceeding liquid front thereby affecting liquid movement. Based on this knowledge complex systems with different functional units can be designed 2. Blood is a fluid tissue comprising particulate elements and dissolved molecules. It is in fact the most often sampled human tissue because of relatively easy availability and because of the wealth of information it carries. Of
Micromachines
Microfluidics provides an indispensable platform for combining analytical operations such as sample preparation, mixing, separation/enrichment, and detection onto a single compact platform, defined as a lab-on-a-chip (LOC) device with applicability in biomedical and life science applications. Due to its ease of integration, 1D interdigital capacitive (IDC) sensors have been used in microfluidic platforms to detect particles of interest. This paper presents a comparative study on the use of capacitive sensors for microfluidic devices to detect bioparticles, more specifically red blood cells (RBCs). The detection sensitivities of 1D, 2D, and 3D capacitive sensors were determined by simulation using COMSOL Multiphysics® v5.5. A water-filled 25 μm × 25 μm PDMS microfluidic channel was used with different sizes (5–10 μm) of red blood cells passing across the capacitive sensor regions. The conformal mapping was used for translating the 1D IDC sensor dimensions into equivalent 2D/3D parall...
Acta Biomaterialia, 2012
Sickle cell disease (SCD) is characterized by the abnormal deformation of red blood cells (RBCs) in the deoxygenated condition, as their elongated shape leads to compromised circulation. The pathophysiology of SCD is influenced by both the biomechanical properties of RBCs and their hemodynamic properties in the microvasculature. A major challenge in the study of SCD involves accurate characterization of the biomechanical properties of individual RBCs with minimum sample perturbation. Here we report the biomechanical properties of individual RBCs from a SCD patient using a non-invasive laser interferometric technique. We optically measure the dynamic membrane fluctuations of RBCs. The measurements are analyzed with a previously validated membrane model to retrieve key mechanical properties of the cells: bending modulus; shear modulus; area expansion modulus; and cytoplasmic viscosity. We find that high cytoplasmic viscosity at ambient oxygen concentration is principally responsible for the significantly decreased dynamic membrane fluctuations in RBCs with SCD, and that the mechanical properties of the membrane cortex of irreversibly sickled cells (ISCs) are different from those of the other types of RBCs in SCD.
Microfluidic Characterization of Red Blood Cells Microcirculation under Oxidative Stress
Cells
Microcirculation is one of the basic functional processes where the main gas exchange between red blood cells (RBCs) and surrounding tissues occurs. It is greatly influenced by the shape and deformability of RBCs, which can be affected by oxidative stress induced by different drugs and diseases leading to anemia. Here we investigated how in vitro microfluidic characterization of RBCs transit velocity in microcapillaries can indicate cells damage and its correlation with clinical hematological analysis. For this purpose, we compared an SU-8 mold with an Si-etched mold for fabrication of PDMS microfluidic devices and quantitatively figured out that oxidative stress induced by tert-Butyl hydroperoxide splits all RBCs into two subpopulations of normal and slow cells according to their transit velocity. Obtained results agree with the hematological analysis showing that such changes in RBCs velocities are due to violations of shape, volume, and increased heterogeneity of the cells. These...