A web server for analysis, comparison and prediction of protein ligand binding sites (original) (raw)
Related papers
webPDBinder: a server for the identification of ligand binding sites on protein structures
Nucleic Acids Research, 2013
The webPDBinder (http://pdbinder.bio.uniroma2.it/ PDBinder) is a web server for the identification of small ligand-binding sites in a protein structure. webPDBinder searches a protein structure against a library of known binding sites and a collection of control non-binding pockets. The number of similarities identified with the residues in the two sets is then used to derive a propensity value for each residue of the query protein associated to the likelihood that the residue is part of a ligand binding site. The predicted binding residues can be further refined using conservation scores derived from the multiple alignment of the PFAM protein family. webPDBinder correctly identifies residues belonging to the binding site in 77% of the cases and is able to identify binding pockets starting from holo or apo structures with comparable performances. This is important for all the real world cases where the query protein has been crystallized without a ligand and is also difficult to obtain clear similarities with bound pockets from holo pocket libraries. The input is either a PDB code or a user-submitted structure. The output is a list of predicted binding pocket residues with propensity and conservation values both in text and graphical format.
SITEHOUND-web: a server for ligand binding site identification in protein structures
Nucleic Acids Research, 2009
SITEHOUND-web (http://sitehound.sanchezlab.org) is a binding-site identification server powered by the SITEHOUND program. Given a protein structure in PDB format SITEHOUND-web will identify regions of the protein characterized by favorable interactions with a probe molecule. These regions correspond to putative ligand binding sites. Depending on the probe used in the calculation, sites with preference for different ligands will be identified. Currently, a carbon probe for identification of binding sites for drug-like molecules, and a phosphate probe for phosphorylated ligands (ATP, phoshopeptides, etc.) have been implemented. SITEHOUNDweb will display the results in HTML pages including an interactive 3D representation of the protein structure and the putative sites using the Jmol java applet. Various downloadable data files are also provided for offline data analysis.
LigDig: a web server for querying ligand-protein interactions
Bioinformatics (Oxford, England), 2014
LigDig is a web server designed to answer questions that previously required several independent queries to diverse data sources. It also performs basic manipulations and analyses of the structures of protein-ligand complexes. The LigDig webserver is modular in design and consists of seven tools, which can be used separately, or via linking the output from one tool to the next, in order to answer more complex questions. Currently, the tools allow a user to: (i) perform a free-text compound search, (ii) search for suitable ligands, particularly inhibitors, of a protein and query their interaction network, (iii) search for the likely function of a ligand, (iv) perform a batch search for compound identifiers, (v) find structures of protein-ligand complexes, (vi) compare three-dimensional structures of ligand binding sites and (vii) prepare coordinate files of protein- ligand complexes for further calculations. Availability and implementation: LigDig makes use of freely available databa...
BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
Nucleic Acids Research, 2007
BindingDB (http://www.bindingdb.org) is a publicly accessible database currently containing 20 000 experimentally determined binding affinities of protein-ligand complexes, for 110 protein targets including isoforms and mutational variants, and 11 000 small molecule ligands. The data are extracted from the scientific literature, data collection focusing on proteins that are drug-targets or candidate drug-targets and for which structural data are present in the Protein Data Bank. The BindingDB website supports a range of query types, including searches by chemical structure, substructure and similarity; protein sequence; ligand and protein names; affinity ranges and molecular weight. Data sets generated by BindingDB queries can be downloaded in the form of annotated SDfiles for further analysis, or used as the basis for virtual screening of a compound database uploaded by the user. The data in BindingDB are linked both to structural data in the PDB via PDB IDs and chemical and sequence searches, and to the literature in PubMed via PubMed IDs.
PLI: a web-based tool for the comparison of protein-ligand interactions observed on PDB structures
Bioinformatics, 2012
Motivation: A large fraction of the entries contained in the Protein Data Bank describe proteins in complex with low molecular weight molecules such as physiological compounds or synthetic drugs. In many cases, the same molecule is found in distinct protein-ligand complexes. There is an increasing interest in Medicinal Chemistry in comparing protein binding sites to get insight on interactions that modulate the binding specificity, as this structural information can be correlated with other experimental data of biochemical or physiological nature and may help in rational drug design. Results: The web service protein-ligand interaction presented here provides a tool to analyse and compare the binding pockets of homologous proteins in complex with a selected ligand. The information is deduced from protein-ligand complexes present in the Protein Data Bank and stored in the underlying database. Availability: Freely accessible at http://bioinformatics.istge.it/pli/. Contact: domenico.bo...
AFAL: a web service for profiling amino acids surrounding ligands in proteins
Journal of Computer-Aided Molecular Design, 2014
With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http:// structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligandbinding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5 0triphosphate.
2010
Server. This server organizes, analyzes and predicts interaction partners and locations of binding sites in proteins. IBIS provides annotations for different types of binding partners (protein, chemical, nucleic acid and peptides), and facilitates the mapping of a comprehensive biomolecular interaction network for a given protein query. IBIS reports interactions observed in experimentally determined structural complexes of a given protein, and at the same time IBIS infers binding sites/interacting partners by inspecting protein complexes formed by homologous proteins. Similar binding sites are clustered together based on their sequence and structure conservation. To emphasize biologically relevant binding sites, several algorithms are used for verification in terms of evolutionary conservation, biological importance of binding partners, size and stability of interfaces, as well as evidence from the published literature. IBIS is updated regularly and is freely accessible via http://www.ncbi.nlm.nih.gov/ Structure/ibis/ibis.html.
LISE is a web server for a novel method for predicting small molecule binding sites on proteins. It differs from a number of servers currently available for such predictions in two aspects. First, rather than relying on knowledge of similar protein structures, identification of surface cavities or estimation of binding energy, LISE computes a score by counting geometric motifs extracted from sub-structures of interaction networks connecting protein and ligand atoms. These network motifs take into account spatial and physicochemical properties of ligand-interacting protein surface atoms. Second, LISE has now been more thoroughly tested, as, in addition to the evaluation we previously reported using two commonly used small benchmark test sets and targets of two community-based experiments on ligand-binding site predictions, we now report an evaluation using a large non-redundant data set containing >2000 protein–ligand complexes. This unprecedented test, the largest ever reported to our knowledge, demonstrates LISE’s overall accuracy and robustness. Furthermore, we have identified some hard to predict protein classes and provided an estimate of the performance that can be expected from a state-of-the-art binding site prediction server, such as LISE, on a proteome scale. The server is freely available at http://lise.ibms.sinica.edu.tw.
In silico Identification and Characterization of Protein-Ligand Binding Sites
Springer eBooks, 2016
Protein ligand binding site prediction methods aim to predict, from amino acid sequence, protein-ligand interactions, putative ligands and ligand binding site residues using either sequence information, structural information or a combination of both. In silico characterisation of protein-ligand interactions have become extremely important to help determine a protein functionality, as in vivo based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time consuming, costly and may not be feasible for large scale analysis, such as drug discovery. Thus, in silico prediction of protein-ligand interactions need to be utilized to aid in functional elucidation. Here we briefly discuss protein function prediction, prediction of protein-ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method FunFOLD for the structurally informed prediction of protein-ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD webserver and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.
The FunFOLD2 server for the prediction of protein–ligand interactions
The FunFOLD2 server is a new independent server that integrates our novel protein-ligand binding site and quality assessment protocols for the prediction of protein function (FN) from sequence via structure. Our guiding principles were, first, to provide a simple unified resource to make our function prediction software easily accessible to all via a simple web interface and, second, to produce integrated output for predictions that can be easily interpreted. The server provides a clean web interface so that results can be viewed on a single page and interpreted by non-experts at a glance. The output for the prediction is an image of the top predicted tertiary structure annotated to indicate putative ligand-binding site residues. The results page also includes a list of the most likely binding site residues and the types of predicted ligands and their frequencies in similar structures. The proteinligand interactions can also be interactively visualized in 3D using the Jmol plug-in. The raw machine readable data are provided for developers, which comply with the Critical Assessment of Techniques for Protein Structure Prediction data standards for FN predictions. The FunFOLD2 webserver is freely available to all at the following web site: