Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles (original) (raw)

Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015

Abstract

ABSTRACT Doxorubicin (DOX) is one of the most effective anticancer drugs for treating many types of cancer. However, the clinical applications of DOX were hindered because of serious side-effects resulting from the unselective delivery to cancer cell including congestive heart failure, chronic cardiomyopathy and drug resistance. Recently, it has been demonstrated that loading anti-cancer drugs onto drug delivery nanosystems helps to maximize therapeutic efficiency and minimize unwanted side-effects via passive and active targeting mechanisms. In this study we prepared folate decorated DOX loaded PLA-TPGS nanoparticles with the aim of improving the potential as well as reducing the side-effects of DOX. Characteristics of nanoparticles were investigated by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) method and Fourier transform infrared spectroscopy (FTIR). Anticancer activity of the nanoparticles was evaluated through cytotoxicity and cellular uptake assays on HeLa and HT29 cancer cell lines. The results showed that prepared drug delivery system had size around 100 nm and exhibited higher cytotoxicity and cellular uptake on both tested HeLa and HT29 cells.

Trang Mai hasn't uploaded this paper.

Let Trang know you want this paper to be uploaded.

Ask for this paper to be uploaded.