A study of Seymour's second neighborhood conjecture (original) (raw)

2011

Abstract

Soit D un digraphe simple (sans cycle orienté de longueur 2 ). En 1990, P. Seymour a conjecturé que D a un sommet v avec un second voisinage extérieur au moins aussi grand que son (premier) voisinage extérieur [1]. Cette conjecture est connue sous le nom de la conjecture du second voisinage du Seymour (SNC). Cette conjecture, si elle est vraie, impliquerait, un cas spécial plus faible (mais important) de la conjecture de Caccetta et Häggkvist [2] proposé en 1978 : tout digraphe D avec un degré extérieur minimum au moins égale à jV (D)j=k a un cycle orienté de longueur au plus k. Le cas particulier est k = 3, et le cas faible exige les deux : le degré extérieur minimum et le degré intérieur minimum de D sont au moins égaux à jV (D)j=k. La conjecture de Seymour restreinte au tournoi est connue sous le nom de conjecture de Dean [1]. En 1996, Fisher [3] a prouvé la conjecture de Dean en utilisant un argument de probabilité. En 2003, Chen, Shen et Yuster [4] ont démontré que tout digraph...

Salman Ghazal hasn't uploaded this paper.

Let Salman know you want this paper to be uploaded.

Ask for this paper to be uploaded.