Mejoras en el entrenamiento de esquemas de detección de sonrisas basados en AdaBoost (original) (raw)
Abstract
Resumen-El presente artículo aborda aspectos del entrenamiento de la máquina de aprendizaje AdaBoost con modelos de reconocimiento de objetos basados en características de apariencia tales como: Patrones Binarios Locales (LBP), Histograma de Gradientes Orientados (HOG) y características tipo Haar para la detección de sonrisas. En este contexto realizamos un estudio del impacto de varios parámetros de entrenamiento de los modelos. Proponemos un nuevo enfoque con respecto a la selección de muestras positivas utilizadas en el periodo de aprendizaje. A diferencia de otros trabajos que utilizan como muestras positivas rostros sonrientes completos, proponemos utilizar únicamente la sección del rostro correspondiente a la boca sonriente. Las pruebas realizadas muestran que nuestro enfoque ofrece hasta un 40% de disminución en el tiempo de entrenamiento y hasta un 20% de disminución en el tiempo de detección con respecto al enfoque convencional, conservando una precisión de detección compar...
Fernando Merchan hasn't uploaded this paper.
Let Fernando know you want this paper to be uploaded.
Ask for this paper to be uploaded.