A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host (original) (raw)

Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54

Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Pi54, a rice gene that imparts resistance to M. oryzae isolates prevalent in India, was already cloned but its avirulent counterpart in the pathogen was not known. After decoding the whole genome of an avirulent isolate of M. oryzae, we predicted 11440 protein coding genes and then identified four candidate effector proteins which are exclusively expressed in the infectious structure, appresoria. In silico protein modeling followed by interaction analysis between Pi54 protein model and selected four candidate effector proteins models revealed that Mo-01947_9 protein model encoded by a gene located at chromosome 4 of M. oryzae, interacted best at the Leucine Rich Repeat domain of Pi54 protein model. Yeast-two-hybrid analysis showed that Mo-01947_9 protein physically interacts with Pi54 protein. Nicotiana benthamiana leaf infiltration assay confirmed induction of hypersensitive response in the presence of Pi54 gene in a heterologous system. Genetic complementation test also proved that Mo-01947_9 protein induces avirulence response in the pathogen in presence of Pi54 gene. Here, we report identification and cloning of a new fungal effector gene which interacts with blast resistance gene Pi54 in rice.

Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses

Proceedings of the National Academy of Sciences, 1998

The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null mutants. The mps1-1⌬ mutants of M. grisea have some phenotypes in common with slt2 mutants of yeast, including sensitivity to cell-wall-digesting enzymes, but display additional phenotypes, including reduced sporulation and fertility. Interestingly, mps1-1⌬ mutants are completely nonpathogenic because of the inability of appressoria to penetrate plant cell surfaces, suggesting that penetration requires remodeling of the appressorium wall through an Mps1dependent signaling pathway. Although mps1-1⌬ mutants are unable to cause disease, they are able to trigger early plant-cell defense responses, including the accumulation of autofluorescent compounds and the rearrangement of the actin cytoskeleton. We conclude that MPS1 is essential for pathogen penetration; however, penetration is not required for induction of some plant defense responses.

Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae

Genome Biology, 2008

http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Magnaporthe oryzae appressonium formulation

Analysis of genome-wide gene-expression changes during spore germination and appressorium formation in Magnaporthe oryzae revealed that protein degradation and amino-acid metabolism are essential for appressorium formation and subsequent infec-tion.

Abstract Background: Rice blast disease is caused by the filamentous Ascomycetous fungus Magnaporthe oryzae and results in significant annual rice yield losses worldwide. Infection by this and many other fungal plant pathogens requires the development of a specialized infection cell called an appressorium. The molecular processes regulating appressorium formation are incompletely understood.

Genome-wide functional analysis of pathogenicity genes in the rice blast fungus

Nature Genetics, 2007

Rapid translation of genome sequences into meaningful biological information hinges on the integration of multiple experimental and informatics methods into a cohesive platform. Despite the explosion in the number of genome sequences available 1 , such a platform does not exist for filamentous fungi. Here we present the development and application of a functional genomics and informatics platform for a model plant pathogenic fungus, Magnaporthe oryzae 2 . In total, we produced 21,070 mutants through large-scale insertional mutagenesis using Agrobacterium tumefaciensmediated transformation 3 . We used a high-throughput phenotype screening pipeline to detect disruption of seven phenotypes encompassing the fungal life cycle and identified the mutated gene and the nature of mutation for each mutant. Comparative analysis of phenotypes and genotypes of the mutants uncovered 202 new pathogenicity loci. Our findings demonstrate the effectiveness of our platform and provide new insights on the molecular basis of fungal pathogenesis. Our approach promises comprehensive functional genomics in filamentous fungi and beyond.

An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus

Proceedings of the National Academy of Sciences, 2010

To cause rice blast disease, the fungus Magnaporthe oryzae breaches the tough outer cuticle of the rice leaf by using specialized infection structures called appressoria. These cells allow the fungus to invade the host plant and proliferate rapidly within leaf tissue. Here, we show that a unique NADPH-dependent genetic switch regulates plant infection in response to the changing nutritional and redox conditions encountered by the pathogen. The biosynthetic enzyme trehalose-6-phosphate synthase (Tps1) integrates control of glucose-6-phosphate metabolism and nitrogen source utilization by regulating the oxidative pentose phosphate pathway, the generation of NADPH, and the activity of nitrate reductase. We report that Tps1 directly binds to NADPH and, thereby, regulates a set of related transcriptional corepressors, comprising three proteins, Nmr1, Nmr2, and Nmr3, which can each bind NADP. Targeted deletion of any of the Nmr-encoding genes partially suppresses the nonpathogenic phenotype of a Δtps1 mutant. Tps1-dependent Nmr corepressors control the expression of a set of virulence-associated genes that are derepressed during appressorium-mediated plant infection. When considered together, these results suggest that initiation of rice blast disease by M. oryzae requires a regulatory mechanism involving an NADPH sensor protein, Tps1, a set of NADP-dependent transcriptional corepressors, and the nonconsuming interconversion of NADPH and NADP acting as signal transducer.

Tissue-Adapted Invasion Strategies of the Rice Blast Fungus Magnaporthe oryzae

The Plant Cell, 2010

Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.

Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae

The plant pathology journal, 2014

Genomes contain a large number of unique genes which have not been found in other species. Although the origin of such "orphan" genes remains unclear, they are thought to be involved in species-specific adaptive processes. Here, we analyzed seven orphan genes (MoSPC1 to MoSPC7) prioritized based on in planta expressed sequence tag data in the rice blast fungus, Magnaporthe oryzae. Expression analysis using qRT-PCR confirmed the expression of four genes (MoSPC1, MoSPC2, MoSPC3 and MoSPC7) during plant infection. However, individual deletion mutants of these four genes did not differ from the wild-type strain for all phenotypes examined, including pathogenicity. The length, GC contents, codon adaptation index and expression during mycelial growth of the four genes suggest that these genes formed during the evolutionary history of M. oryzae. Synteny analyses using closely related fungal species corroborated the notion that these genes evolved de novo in the M. oryzae genome. ...

Homeobox Transcription Factors Are Required for Conidiation and Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae

Plos Genetics, 2009

The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homologydependent gene replacement. Two mutants, DMohox3 and DMohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the DMohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. DMohox4 and DMohox6 showed significantly reduced conidium size and hyphal growth, respectively. DMohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in DMohox2, in which no conidia formed. DMohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, DMohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca 2+ signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives.

Characterization of MoLDB1 Required for Vegetative Growth, Infection-Related Morphogenesis, and Pathogenicity in the Rice Blast Fungus Magnaporthe oryzae

Molecular Plant-Microbe Interactions®, 2010

An insertional mutagenesis screen in the rice blast fungus, Magnaporthe oryzae, identified a novel mutant, A2-12-3, which is defective in infection-related morphogenesis and pathogenicity. Analysis of the mutation confirmed an insertion into MoLDB1, which putatively encodes an 806-amino-acid protein with a predicted LIM binding domain. Targeted gene deletion mutants of MoLDB1 were unable to produce asexual or sexual spores and were significantly impaired in vegetative growth and fungal virulence. The Δmoldb1 mutants also showed reduced expression of genes coding hydrophobic proteins (e.g. MPG1 and MHP1), resulting in an easily wettable phenotype in vegetative culture. Moreover, the expression of four genes encoding LIM proteins predicted from the M. oryzae genome was significantly downregulated by deletion of MoLDB1. Analysis of an M. oryzae strain expressing a MoLbd1-green fluorescent protein gene fusion was consistent with the protein being nuclear localized. When considered toget...

The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae

Fungal Genetics and Biology, 2011

Rice blast, caused by the pathogen Magnaporthe oryzae, is a serious hindrance to rice production and has emerged as an important model for the characterization of molecular mechanisms relevant to pathogenic development in plants. Similar to other pathogenic fungi, conidiation plays a central role in initiation of M. oryzae infection and spread over a large area. However, relatively little is known regarding the molecular mechanisms that underlie conidiation in M. oryzae. To better characterize these mechanisms, we identified a conidiation-defective mutant, ATMT0225B6 (MoCDC15 T-DNA), in which a T-DNA insertion disrupted a gene that encodes a homolog of fission yeast cdc15, and generated a second strain containing a disruption in the same allele (DMoCDC15 T-DNA). The cdc15 gene has been shown to act as a coordinator of the cell cycle in yeast. Functional analysis of the MoCDC15 T-DNA and DMoCDC15 T-DNA mutants revealed that MoCDC15 is required for conidiation, preinfection development and pathogenicity in M. oryzae. Conidia from these mutants were viable, but failed to adhere to hydrophobic surface, a crucial step required for subsequent pathogenic development. All phenotypic defects observed in mutants were rescued in a strain complemented with wild type MoCDC15. Together, these data indicate that MoCDC15 functions as a coordinator of several biological processes important for pathogenic development in M. oryzae.