Modulational stability of weakly nonlinear wave-trains in media with small- and large-scale dispersions (original) (raw)
2015, Chaos: An Interdisciplinary Journal of Nonlinear Science
In this paper, we revisit the problem of modulation stability of quasi-monochromatic wave-trains propagating in a media with the double dispersion occurring both at small and large wavenumbers. We start with the shallow-water equations derived by Shrira [Izv., Acad. Sci., USSR, Atmos. Ocean. Phys. (Engl. Transl.) 17, 55–59 (1981)] which describes both surface and internal long waves in a rotating fluid. The small-scale (Boussinesq-type) dispersion is assumed to be weak, whereas the large-scale (Coriolis-type) dispersion is considered as without any restriction. For unidirectional waves propagating in one direction, only the considered set of equations reduces to the Gardner–Ostrovsky equation which is applicable only within a finite range of wavenumbers. We derive the nonlinear Schrödinger equation (NLSE) which describes the evolution of narrow-band wave-trains and show that within a more general bi-directional equation the wave-trains, similar to that derived from the Ostrovsky equ...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.