EDDAMAP: efficient data-dependent approach for monitoring asymptomatic patient (original) (raw)
Background A pandemic affects healthcare delivery and consequently leads to socioeconomic complications. During a pandemic, a community where there lives an asymptomatic patient (AP) becomes a potential endemic zone. Assuming we want to monitor the travel and/or activity of an AP in a community where there is a pandemic. Presently, most monitoring algorithms are relatively less efficient to find a suitable solution as they overlook the continuous mobility instances and activities of the AP over time. Conversely, this paper proposes an EDDAMAP as a compelling data-dependent technique and/or algorithm towards efficient continuous monitoring of the travel and/or activity of an AP. Methods In this paper, it is assumed that an AP is infected with a contagious disease in which the EDDAMAP technique exploits a GPS-enabled mobile device by tagging it to the AP along with its travel within a community. The technique further examines the Spatio-temporal trajectory of the AP to infer its spati...