Optimized precision micromachining using commercially available high-repetition rate microjoule femtosecond fiber lasers (original) (raw)
2006
Abstract
Fiber lasers offer an excellent technology base for production of an industrial-quality tool for precision microfabrication, answering the need to expand the capabilities of laser material processing beyond traditional welding, cutting, and other industrial processes. IMRA's FCPA μJewel TM femtosecond fiber laser has been developed to address the particular need for direct-write lasers for creation of clean and high-quality micron and sub-micron features in materials of commercial interest. This flexible Yb:fiber chirped-pulse amplification architecture, capable of operating at rep-rates between 100 kHz and 5 MHz, balances the need for higher-repetition rate with that of sufficient pulse energy to work at or near ablation threshold, while meeting industrial standards for temperature, shock and vibration. Demonstration of the need for higher-repetition rates for direct write processes will be provided in this paper. Further, results of laser-processing of materials typically used in flat panel displays, photomasks, and waveguide production using the FCPA μJewel TM laser will be presented.
Alan Arai hasn't uploaded this paper.
Let Alan know you want this paper to be uploaded.
Ask for this paper to be uploaded.