Machine learning-based classification of dual fluorescence signals reveals muscle stem cell fate transitions in response to regenerative niche factors (original) (raw)

npj Regenerative Medicine

The proper regulation of muscle stem cell (MuSC) fate by cues from the niche is essential for regeneration of skeletal muscle. How pro-regenerative niche factors control the dynamics of MuSC fate decisions remains unknown due to limitations of population-level endpoint assays. To address this knowledge gap, we developed a dual fluorescence imaging time lapse (Dual-FLIT) microscopy approach that leverages machine learning classification strategies to track single cell fate decisions with high temporal resolution. Using two fluorescent reporters that read out maintenance of stemness and myogenic commitment, we constructed detailed lineage trees for individual MuSCs and their progeny, classifying each division event as symmetric self-renewing, asymmetric, or symmetric committed. Our analysis reveals that treatment with the lipid metabolite, prostaglandin E2 (PGE2), accelerates the rate of MuSC proliferation over time, while biasing division events toward symmetric self-renewal. In cont...