Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals (original) (raw)

Variations of biomarkers response in mussels Mytilus galloprovincialis to low, moderate and high concentrations of organic chemicals and metals

Chemosphere, 2017

The changes of acetylcholinesterase activity (AChE), metallothioneins content (MTs), catalase activity (CAT) and lipid peroxidation (LPO) were assessed after 4 days exposure of mussels Mytilus galloprovincialis to a wide range of sublethal concentrations of chlorpyrifos (CHP, 0.03-100 μg/L), benzo(a)pyrene (B(a)P, 0.01-100 μg/L), cadmium (Cd, 0.2-200 μg/L) and copper (Cu, 0.2-100 μg/L). The activity of AChE in the gills decreased after exposure to CHP and Cu, whereas no change of activity was detected after exposure to B(a)P and Cd. Both induction and decrease of MTs content in digestive gland occurred after exposure to CHP and B(a)P, while a marked increase was evident at highest exposure concentrations of Cd. The content of MTs progressively decreased of MTs with increasing concentration of Cu. CAT activity and LPO in the gills did not change after exposure to any of the chemicals. The results demonstrate different response profile in relation to the type of chemical compound, and...

Induction of Specific Isoforms of Metallothionein in Mussel Tissues After Exposure to Cadmium or Mercury

Archives of Environmental Contamination and Toxicology, 2002

The synthesis of metallothioneins has been established for Mytilus edulis exposed to cadmium and mercury. We checked if this induction resulted in the synthesis of tissue-or metal-specific isoforms in the gills, the mantle, and the digestive gland that could be used as tool for the characterization of undefined metallic contamination of aquatic ecosystems. An accumulation of metals was observed in the selected organs after 21 days of exposure. The levels of metallothioneins measured by using the polarographic method were significantly increased by cadmium and mercury in the gills (21 days). Size exclusion chromatography showed the presence of a monomer and a dimer of metallothionein of respective apparent molecular weight about 12 kDa and 20 kDa in all samples. They were resolved into five components by anion exchange chromatography in the gills of control or Hg-treated mussels, whereas a sixth isoform was isolated in the gills of cadmium-exposed mussels. In the mantle of mussels exposed or not, five isoforms were separated, and in the digestive gland of mussels exposed or not, six isoforms were separated. The occurrence of a specific cadmium-binding isoform in the gills has to be confirmed in cadmium-contaminated specimens collected in situ before its detection may be used as biomarker of cadmium contamination.

Oxidative effects of inorganic and organic contaminants on haemolymph of mussels

Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009

We applied a newly-established method in haemolymph of mussels, Mytilus galloprovincialis, exposed to different concentrations of heavy metals, such as zinc and cadmium and organic pollutants, such as PAHs and lindane, for the detection of total antioxidant capacity (TAC). The susceptibility of exposed mussels was increased in relation to oxidative stress induced by contaminants tested. Oxidative modifications of proteins were estimated by measuring protein carbonyl content (PCC) and malondialdehyde levels (MDA). For PCC measurement, a highly sensitive and accurate ELISA method, which requires only 5 µg of protein, was used. The significant increase of PCC and MDA in haemolymph of exposed mussels reinforces its role as biomarkers of oxidative stress. Significant correlation of TAC assay, PCC and MDA was conducted in order to evaluate the utility of PCC and TAC assay, used in the present study, as tools for determining oxidative effects of pollutants in mussels. The results reinforce the application of PCC method as useful tool for the determination of PCC alterations in haemolymph of mussels exposed to different levels of contaminants. In addition, the TAC method gives encouraging results, concerning its ability to predict antioxidant efficiency in haemolymph of mussels exposed to inorganic and organic contaminants.

Using Heavy Metal Content and Lipid Peroxidation Indicators in the Tissues of the Mussel Crenomytilus grayanus for Pollution Assessment After Marine Environmental Remediation

Bulletin of Environmental Contamination and Toxicology, 2015

We examined the effects of environmental remediation on the heavy metal concentration and lipid peroxidation activity in the digestive gland and gills of the marine mussel Crenomytilus grayanus. Changes in heavy metal concentrations and lipid peroxidation biomarkers in the tissues of mussels collected at a contaminated site were compared with those obtained from a reference site. Prior to remediation the concentration of Pb, Cu, Cd, Fe and Zn and the levels of malondialdehyde, conjugated dienes and lipofuscin in mussels collected from the contaminated site were significantly increased compared with those obtained from the reference site. Three years after remediation, these parameters did not significantly exceed the reference site parameters, except Pb, whose concentration, though markedly decreased, yet was much higher than in tissues of mussels from the reference site.

Oxidative Damage of Mussels Living in Seawater Enriched with Trace Metals, from the Viewpoint of Proteins Expression and Modification

The impact of metals bioaccumulation on marine organisms is under investigation. This study was designed to determine the association of oxidative stress in mussels Mytilus galloprovincialis induced by seawater enriched with trace metals with protein synthesis. Mussels were exposed to 40 μg/L Cu, 30 μg/L Hg, or 100 μg/L Cd for 5 and 15 days, and the pollution effect was evaluated by measuring established oxidative biomarkers. The results showed damage on the protein synthesis machine integrity and specifically, on translation factors and ribosomal proteins expression and modifications. Exposure of mussels to all metals caused oxidative damage that was milder in the cases of Cu and Hg, and more pronounced for Cd. However, after prolonged exposure of mussels to Cd (15 days), the effects receded. These changes that perturb protein biosynthesis can serve as a great tool for elucidating the mechanisms of toxicity and could be integrated in biomonitoring programs.

Contaminant accumulation and multi-biomarker responses in field collected zebra mussels ( Dreissena polymorpha) and crayfish ( Procambarus clarkii), to evaluate toxicological effects of industrial hazardous dumps in the Ebro river (NE Spain)

Chemosphere, 2010

Large amounts of industrial waste containing high concentrations of mercury, cadmium and organochlorine residues were dumped in a reservoir adjacent to a chlorine-alkali plant in the village of Flix(Catalonia, Spain), situated at the shore of the lower Ebro river. Effects of these contaminants to aquatic river invertebrates were assessed by integrating analyses of metals and organochlorine residues in field collected zebra mussels and crayfish with a wide range of biomarkers. Biological responses included levels of metallothioneins, activities of ethoxyresorufin-O-deethylase, oxidative stress biomarkers (glutathione content, enzymatic activities of superoxide dismutase, catalase, glutathione s-transferase, glutathione peroxidise and glutathione reductase), levels of lipid peroxidation and of DNA strand breaks. The results obtained evidenced similar response patterns in mussels and crayfish with increasing toxic stress levels from upper parts of the river towards the meander located immediately downstream from the most polluted site, close to the waste dumps. The aforementioned stress levels could be related with concentrations of mercury, cadmium, hexachlorobenzene, polychlorobiphenyls and dichlorodiphenyltrichloroethanes from 4- to 195-fold greater than local background levels. The response of biomarkers to these pollutant concentrations differences was reflected in high activities and levels of antioxidant enzymes, metallothioneins, lipid peroxidation and DNA strand breaks and decreased levels of glutathione.

Translational responses and oxidative stress of mussels experimentally exposed to Hg, Cu and Cd: One pattern does not fit at all

Aquatic Toxicology, 2011

Heavy metals are commonly associated with the generation of reactive oxygen species (ROS), which may cause oxidative damage to several cellular macromolecules and organelles. In an attempt to correlate biomarker responses to oxidative stress, caged mussels (Mytilus galloprovincialis) were exposed for 30 days in a relatively clean site and two areas (Stations 1 and 2) unevenly polluted by heavy metals in Gulf of Patras (Greece). Three periods of caging were: one in winter, the second in spring, and the third in autumn. Heavy metal content was determined in digestive glands of the exposed mussels as a measure of metal pollution, metallothionein content as an adaptive and detoxifying index, lysosomal membrane stability as a biomarker of general stress, superoxide radical production and lipid peroxidation as indicators of oxidative stress, and micronucleus frequency in gill cells as an index of chromosomal damage. Considering that protein-synthesizing machinery is one of the candidate targets for ROS, the in vivo activity of ribosomes in digestive glands was also tested. Compared with the reference samples, mussels transplanted to Station 1 showed increased levels of heavy metals and metallothionein in digestive glands, lower lysosomal membrane stability, higher values in oxidative stress indices, reduced activity of ribosomes, and increased chromosomal damage in gill cells. In addition, run-off ribosomes isolated from mussels transplanted to Station 1 were less efficient at initiating protein synthesis in a cell-free system than those from mussels in the reference site. Mussels transplanted to Station 2 exhibited similar but less pronounced responses. Statistical analysis revealed a strong positive correlation of ribosomal activity with lysosomal membrane stability, as well as a significant negative correlation with the oxidative stress indices, metallothionein content, micronucleus frequency, and the digestive gland content in Cr, Cu and Mn. Integration of all the measured biomarker responses into one general "stress index" demonstrated a clear distinction between the sampling sites, allowing classification along a pollution gradient (reference site < Station 2 < Station 1), independently from the season. Moreover, this analysis allowed us to compare responses between sampling campaigns and showed that the biomarker responses show best integration in winter. It was also evident that climatic or metabolic changes could modulate bioavailability of pollutants and priming of cellular defence processes.

Lipid peroxidation vs. antioxidant modulation in the bivalve Scrobicularia plana in response to environmental mercury—Organ specificities and age effect

Aquatic Toxicology, 2011

This study aimed at the assessment of mercury burden and its association to damage vs. antioxidant protection in the bivalve Scrobicularia plana environmentally exposed to mercury. Inter-age and organspecific approaches were applied by using different annual size classes (2+, 3+, 4+ and 5+ year old) and assessing specific organs (gills, digestive gland), respectively. Bivalves were collected from moderately and highly contaminated sites at Laranjo basin -Ria de Aveiro (Portugal), where a mercury gradient was identified, and compared with those from a reference site. Besides total and organic mercury accumulation, endpoints combining lipid peroxidation (LPO), as a damage sign, and antioxidant protection (catalase, CAT; glutathione peroxidase, GPX; glutathione S-transferase, GST, activities) were determined. The whole-body accumulation as total mercury changed according to the environmental gradient for all age classes, while in terms of organic mercury, only 5+-year-old animals showed increased accumulation with increased environmental mercury level. Mercury induced peroxidative damage, showing that antioxidative mechanisms were insufficient. The adaptive capacity to pro-oxidant challenge, expressed as antioxidant induction and lesser vulnerability to enzyme inhibition, increased with age. The specific analyses of gills and digestive gland revealed that both organs were able to mirror external levels of exposure in the accumulation of total and organic mercury. Nevertheless, gills displayed higher potential to accumulate organic forms. The organ specificity was evident for antioxidant response with a clear pattern of overall increase in gills and decrease in digestive gland. In addition, only gills displayed statistical correlations between oxidative stress responses and mercury accumulation. Besides the contribution to understand mercury toxicodynamics, specific organs approach is strongly recommended in order to avoid misinterpretations. The use of whole-body analyses can be particularly compromising when oxidative stress responses (rather than mercury accumulation) are addressed.