Genetic Algorithm-Assisted Artificial Neural Network for the Estimation of Drilling Parameters of Magnesium AZ91 in Vertical Milling Machine (original) (raw)

Surface Review and Letters, 2020

Abstract

The selection of appropriate drilling parameters is essential for improving productivity and part quality, therefore, this work mainly concentrates on the investigation of drilling time, burr height, burr thickness, roundness and surface roughness. The drilling experiments were carried out on Magnesium (Mg) AZ91 with High Speed Steel (HSS) tool using the Vertical Milling Machine (VMM). The parameters reckoned are spindle speed and feed rate. Artificial Neural Network (ANN) was concerned with the building of the model that will be used to forecast the responses following the consideration of Response Surface Methodology (RSM). Conventional method of modeling (RSM) yields poorer results which redirected the study with ANN. The Genetic Algorithm (GA)-based ANN has been reckoned for developing the model. With two nodes in the parameter layer and seven nodes in the response layer, six different networks were constructed using variety of nodes in the hidden layers which are 2–6–7, 2–7–7, ...

hani sayahi hasn't uploaded this paper.

Let hani know you want this paper to be uploaded.

Ask for this paper to be uploaded.