Molecular Target-Guided Tumor Therapy with Natural Products Derived from Traditional Chinese Medicine (original) (raw)

Phytochemistry and pharmacogenomics of natural products derived from traditional chinese medicine and chinese materia medica with activity against tumor cells

Molecular Cancer Therapeutics, 2008

The cure from cancer is still not a reality for all patients, which is mainly due to the limitations of chemotherapy (e.g., drug resistance and toxicity). Apart from the highthroughput screening of synthetic chemical libraries, natural products represent attractive alternatives for drug development. We have done a systematic bioactivitybased screening of natural products derived from medicinal plants used in traditional Chinese medicine. Plant extracts with growth-inhibitory activity against tumor cells have been fractionated by chromatographic techniques. We have isolated the bioactive compounds and elucidated the chemical structures by nuclear magnetic resonance and mass spectrometry. By this strategy, we identified 25-O-acetyl-23,24-dihydro-cucurbitacin F as a cytotoxic constituent of Quisqualis indica. Another promising compound identified by this approach was miltirone from Salvia miltiorrhiza. The IC 50 values for miltirone of 60 National Cancer Institute cell lines were associated with the microarray-based expression of 9,706 genes. By COMPARE and hierarchical cluster analyses, candidate genes were identified, which significantly predicted sensitivity or resistance of cell lines to miltirone. [Mol Cancer Ther

From traditional Chinese medicine to rational cancer therapy

Trends in Molecular Medicine, 2007

Many natural products and derivatives thereof belong to the standard repertoire of cancer chemotherapy. Examples are Vinca alkaloids, taxanes and camptothecins. In recent years, the potential of natural products from plants, notably from medicinal plants used in traditional Chinese medicine (TCM), has been recognized by the scientific community in the Western world. To provide an example of the most recent developments in this field, we have selected several compounds, namely artesunate, homoharringtonine, arsenic trioxide and cantharidin, that are found in natural TCM products and that have the potential for use in cancer therapy. Controlled clinical studies have shown that homoharringtonine and arsenic trioxide can exert profound activity against leukaemia. Increased knowledge of the molecular mechanisms of TCM-derived drugs and recent developments in their applications demonstrate that the combination of TCM with modern cutting-edge technologies provides an attractive strategy for the development of novel and improved cancer therapeutics.

US National Cancer Institute–China Collaborative Studies on Chinese Medicine and Cancer

JNCI Monographs, 2017

Since 2007, the US National Cancer Institute (NCI) Office of Cancer Complementary and Alternative Medicine (OCCAM), together with the Cancer Institute of the China Academy of Chinese Medical Sciences (CICACMS), institutes at China Academy of Sciences and Chinese Academy of Medical Sciences, have engaged in collaborations on Chinese medicine (CM) and cancer research. Through these collaborations, CM drugs and compounds have been studied at NCI labs. This paper summarizes the discoveries and progress on these research projects, exploring the aspects of cancer prevention, botanical drug mechanisms of action and component analysis/quality control (QC), and anticancer activity screening. These and other related projects have been presented in various jointly convened workshops and have provided the backdrop for establishing a new organization, the International Consortium for CM and Cancer, to promote international collaborations in this field.

Molecular Aspects and Therapeutic Implications of Herbal Compounds Targeting Different Types of Cancer

Molecules

Due to genetic changes in DNA (deoxyribonucleic acid) sequences, cancer continues to be the second most prevalent cause of death. The traditional target-directed approach, which is confronted with the importance of target function in healthy cells, is one of the most significant challenges in anticancer research. Another problem with cancer cells is that they experience various mutations, changes in gene duplication, and chromosomal abnormalities, all of which have a direct influence on the potency of anticancer drugs at different developmental stages. All of these factors combine to make cancer medication development difficult, with low clinical licensure success rates when compared to other therapy categories. The current review focuses on the pathophysiology and molecular aspects of common cancer types. Currently, the available chemotherapeutic drugs, also known as combination chemotherapy, are associated with numerous adverse effects, resulting in the search for herbal-based alt...

Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms

Future Journal of Pharmaceutical Sciences

Background Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials. Main body The purpose of this study is to systematically comprehend the progress made in the...

Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics

Molecules

Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolom...

Integration of phytochemicals and phytotherapy into cancer precision medicine

Oncotarget, 2015

Concepts of individualized therapy in the 1970s and 1980s attempted to develop predictive in vitro tests for individual drug responsiveness without reaching clinical routine. Precision medicine attempts to device novel individual cancer therapy strategies. Using bioinformatics, relevant knowledge is extracted from huge data amounts. However, tumor heterogeneity challenges chemotherapy due to genetically and phenotypically different cell subpopulations, which may lead to refractory tumors. Natural products always served as vital resources for cancer therapy (e.g., Vinca alkaloids, camptothecin, paclitaxel, etc.) and are also sources for novel drugs. Targeted drugs developed to specifically address tumor-related proteins represent the basis of precision medicine. Natural products from plants represent excellent resource for targeted therapies. Phytochemicals and herbal mixtures act multispecifically, i.e. they attack multiple targets at the same time. Network pharmacology facilitates the identification of the complexity of pharmacogenomic networks and new signaling networks that are distorted in tumors. In the present review, we give a conceptual overview, how the problem of drug resistance may be approached by integrating phytochemicals and phytotherapy into academic western medicine. Modern technology platforms (e.g. "-omics" technologies, DNA/RNA sequencing, and network pharmacology) can be applied for diverse treatment modalities such as cytotoxic and targeted chemotherapy as well as phytochemicals and phytotherapy. Thereby, these technologies represent an integrative momentum to merge the best of two worlds: clinical oncology and traditional medicine. In conclusion, the integration of phytochemicals and phytotherapy into cancer precision medicine represents a valuable asset to chemically synthesized chemicals and therapeutic antibodies.

Molecular understanding and modern application of traditional medicines: triumphs and trials

Cell, 2007

Traditional medicines provide fertile ground for modern drug development, but first they must pass along a pathway of discovery, isolation, and mechanistic studies before eventual deployment in the clinic. Here, we highlight the challenges along this route, focusing on the compounds artemisinin, triptolide, celastrol, capsaicin, and curcumin.

Possible Interventional Anticancer Therapy by Phytomedicines -A Review

Texila International Journal of Public Health , 2024

Cancer is the rapid proliferation that causes abnormal cells which metastasize to distant tissues. This aberrant signalling mechanism disrupts the regulation of cell proliferation and persistence, ultimately becoming the primary cause of mortality worldwide. The need for novel medications for the treatment and prevention of this deadly disease is constantly rising. Herbal therapies have significance for both preventing and treating a variety of malignancies. Anticancer medications have been discovered and developed from many herbal medicines by the presence of their bioactive phytochemicals such as phenolics, alkaloids, flavonoids, carotenoids, and other secondary metabolites. These herbal products are said to have less toxic side effects when compared to modern treatment strategies. Therapeutic medicinal herbs suppress the progression of cancerous cells by influencing the action of particular enzymes and hormones. The bioactive phytochemicals obstruct cancerous cell multiplication, promote apoptosis of malignant cells, enforce the necrosis of tumors, and inhibit their translocation. They also exert their action by enhancing the number of leukocytes and platelets, promoting the reverse transformation from tumor cells back to usual cells, and they similarly prevent carcinogenesis of regular cells. This review paper enlightens the significance of herbal medicines as anticancer agents and explains, in brief, the mechanism of action and the effects of the herbal bioactive compound. This review helps to explore the potential therapeutic plants as a basis for the discovery of chemotherapy medications.