Increased Use of Fly Ash in Hydraulic Cement Concrete (HCC) for Pavement Layers and Transportation Structures (original) (raw)
Abstract
AI
The paper focuses on increasing the use of high volume fly ash (HVFA) in hydraulic cement concrete (HCC) for pavement layers and transportation structures, highlighting both benefits and barriers. It reports on innovative solutions for mixture proportioning and strength prediction and discusses the potential for improved sustainability and performance. The project aims to overcome existing restrictions and enhance understanding of HVFA's advantages to promote wider application in the industry.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (186)
- Bentz, D. P. (2002). Influence of curing conditions on water loss and hydration in cement pastes with and without fly ash substitution (NISTIR 6886). Washington, DC: U.S. Depart- ment of Commerce. Retrieved from http://ws680.nist.gov/ publication/get_pdf.cfm?pub_id5860431
- Bentz, D. P. (2007). Internal curing of high-performance blen- ded cement mortars. ACI Materials Journal, 104(3), 408- 414. http://dx.doi.org/10.14359/18831
- Bentz, D. P., Lura, P., & Roberts, J. W. (2005). Mixture pro- portioning for internal curing. Concrete International, 27(2), 35-40.
- Bentur, A. (Ed.). (2003). Early age cracking in cementitious systems-Report of RILEM Technical Committee 181- EAS-Early age shrinkage induced stresses and cracking in cementitious systems (RILEM Report 25). Paris, France: RILEM Publications SARL.
- Carino, N. (1991). The maturity method. In V. M. Malhotra & N. J. Carino (Eds.), CRC Handbook on Nondestructive Test- ing of Concrete (pp. 101-146). Boca Raton, FL: CRC Press.
- Henkensiefken, R., Castro, J., Bentz, D., Nantung, T., & Weiss, J. (2009). Water absorption in internally cured mor- tar made with water-filled lightweight aggregate. Cement and Concrete Research, 39(10), 883-892. http://dx.doi.org/ 10.1016/j.cemconres.2009.06.009
- Kovler, K., & Jensen, O. M. (Eds.). (2007). Internal curing of concrete-State of the art report of RILEM Technical Committee 196-ICC (RILEM Report 41). Paris, France: RILEM Publications SARL.
- Mehta, P. K. (2004). High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the International Workshop on Sustainable Development and Con- crete Technology (pp. 3-14). Ames, IA: Iowa State Univer- sity, Center for Transportation Research and Education.
- Ramachandran, V. S., & Zhang, C. (1986). Influence of CaCO3 on hydration and microstructural characteristics of Tricalcium Silicate. Il Cemento, 83, 129-152.
- Raoufi, K., Radlinska, A., Nantung, T., & Weiss, W. J. (2008). Practical considerations to determine the time and depth of saw-cuts in concrete pavements. Transportation Research Record, 2081, 110-117. http://dx.doi.org/10.3141/2081-12
- Riding, K. A., Poole, J. L., Schindler, A. K., Juenger, M. G., & Folliard, K. J. (2007). Temperature boundary condition models for concrete bridge members. ACI Materials Journal, 104(4), 379-387. http://dx.doi.org/10.14359/18827
- Schindler, A. K. (2004). Prediction of concrete setting. In J. Weiss, K. Kovler, J. Marchand, & S. Mindess (Eds.), International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur. Paris, France: RILEM Publications SARL.
- Schindler, A. K., & Folliard, K. J. (2005). Heat of hydration models for cementitious materials. ACI Materials Journal, 102(1), 24-33. http://dx.doi.org/10.14359/14246
- Schlitter, J. L., Bentz, D. P., & Weiss, J. (2010). Quantifying residual stress development and reserve strength in restrai- ned internally cured concrete. ACI Materials Journal, 110(1), 3-12. http://dx.doi.org/10.14359/51684361
- Schlitter, J. L., Senter, A. H., Bentz, D. P., Nantung, T., & Weiss, W. J. (2010). A dual concentric ring test for evaluat- ing residual stress development due to restrained volume change. Journal of ASTM International, 7(9), 1-13. https:// doi.org/10.1520/JAI103118
- Shah, S. P., Weiss, W. J., & Yang, W. (1998). Shrinkage cracking-Can it be prevented? Concrete International, 20(4), 51-55.
- Wade, S. A., Nixon, J. M., Schindler, A. K., & Barnes, R. W. (2004). Setting behavior of concrete cured at fluctuating temperatures. In Transportation Research Board annual meeting compendium of papers [CD-ROM]. Washington, DC: Transportation Research Board. REFERENCES
- ACAA. (2013). 2013 Coal Combustion Product (CCP) Production & Use Survey Report. Farmington Hills, MI: American Coal Ash Association. Retrieved from https:// www.acaa-usa.org/Publications/Production-Use-Reports Naik, T. R., & Singh, S. S. (1991). Superplasticized structural concrete containing high volumes of Class C fly ash. ASCE Journal of Energy Engineering, 117(2), 87-95. http://dx.doi. org/10.1061/(ASCE)0733-9402(1991)117:2(87)
- Obla, K., Hill, R., & Martin, R. (2003). HVFA concrete-An industry perspective. ACI Concrete International, 25(8), 49-54.
- Sivasundaram, V., Carette, G. G., & Malhotra, V. M. (1989). Properties of concrete incorporating low quantity of cement and high volumes of low-calcium fly ash. In V. M. Malhotra (Ed.), ACI SP-114: Fly ash, silica fume, slag, and natural pozzolans in concrete-Proceedings of the Third International Confer- ence (pp. 45-71). Farmington Hills, MI: American Concrete Institute. http://dx.doi.org/10.14359/1847
- Slag Cement Association. (n.d.). U.S. Slag Cement Shipments. Retrieved from http://www.slagcement.org/News/Shipments.html U.S. Geological Survey. (n.d.). Cement Statistics and Infor- mation. Retrieved from http://minerals.usgs.gov/minerals/ pubs/commodity/cement/ REFERENCES
- ACI Committee 232. (2003). Use of fly ash in concrete (ACI 232.2R-03). Farmington Hills, MI: American Concrete Institute.
- ASTM C109. (2007). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50- mm] cube specimens). West Conshohocken, PA: ASTM International.
- ASTM C138. (2008). Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete. West Conshohocken, PA: ASTM International.
- ASTM C143. (2008). Standard test method for slump of hydraulic-cement concrete. West Conshohocken, PA: ASTM International.
- ASTM C192. (2007). Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken, PA: ASTM International.
- ASTM C231. (2004). Standard test methods for air content of freshly mixed concrete by the pressure method. West Conshohocken, PA: ASTM International.
- ASTM C232. (2007). Standard test methods for bleeding of concrete. West Conshohocken, PA: ASTM International.
- ASTM C311. (2005). Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete. West Conshohocken, PA: ASTM International. ASTM C403. (2006). Standard test method for time of setting of concrete mixtures by penetration resistance. West Conshohocken, PA: ASTM International.
- ASTM C403. (2008). Standard test method for time of set- ting of concrete mixtures by penetration resistance. West Conshohocken, PA: ASTM International.
- ASTM C494. (2005). Standard specification for chemical admixtures for concrete. West Conshohocken, PA: ASTM International.
- ASTM C566. (1997). Standard test method for total evaporable moisture content of aggregate by drying. West Consho- hocken, PA: ASTM International.
- ASTM C1064. (2008). Standard test method for temperature of freshly mixed hydraulic-cement concrete. West Consho- hocken, PA: ASTM International.
- ASTM C1074. (2004). Standard practice for estimating con- crete strength by the maturity method. West Conshohocken, PA: ASTM International.
- Bilodeau, A., Malhotra, V. M., & Seabrook, P. T. (2001). Use of high-volume fly ash concrete at the Liu Centre. Ottawa, Canada: International Centre for Sustainable Development of Cement and Concrete (ICON), Materials and Research Laboratory, CANMET, Natural Resources Canada.
- Bisaillon, A., Rivest, M., & Malhotra, V. M. (1994). Per- formance of high volume fly ash concrete in large experi- mental monoliths. ACI Materials Journal, 91(2), 178-187. http://dx.doi.org/10.14359/4571
- Bogue, R. H. (1947). The chemistry of Portland cement. New York, NY: Reinhold Publishing Corporation.
- Carino, N. J. (2004). The maturity method. In V. M. Malhotra & N. J. Carino (Eds.), Handbook on nondestruc- tive testing of concrete (2nd ed., 5.1-5.47). West Conshohocken, PA: ASTM International.
- Cost, T. (2009). Thermal measurements of hydrating concrete mixtures-A useful quality control tool for concrete produ- cers (NRMCA Publication 2PE004). Silver Spring, MD: NRMCA Engineering Division.
- Eren, O., Brooks, J. J., & Celik, T. (1995). Setting times of fly ash and slag-cement concretes as affected by curing temp- erature. Cement, Concrete and Aggregates, 17(1), 11-17. https://doi.org/10.1520/CCA10331J
- Folliard, K. J., Juenger, M. G., Schindler, A. K., Riding, K., Poole, J., Kallivokas, L. F., ... Meadows, J. L. (2008). Prediction model for concrete behavior-Final report (Research Report No. 0-4563-1). Austin, TX: Center for Transportation Research, University of Texas at Austin.
- Ge, Z., & Wang, K. (2009). Modified heat of hydration and strength models for concrete containing fly ash and slag. Computers and Concrete, 6(1), 19-40. http://dx.doi.org/10\. 12989/cac.2009.6.1.019
- Hansen, P. F., & Pederson, J. (1977). Maturity computer for controlled curing and hardening of concrete strength. Nordisk Betong, 1, 19-34.
- Hansen, P. F., & Pederson, J. (1985). Curing of concrete structures. CEB Information Bulletin 166.
- Keith, K. P. (2011). Characterization of the behavior of high volume fly ash concrete (Doctoral dissertation). Auburn, AL: Auburn University.
- Kishi, T., & Maekawa, K. (1995). Thermal and mechanical modeling of young concrete based on hydration process of multi-component cement minerals. In R. Springenschmid (Ed.), Proceedings of the International RILEM Symposium on Thermal Cracking in Concrete at Early Ages (pp. 11-18). London, UK: E & FN Spon.
- Kjellsen, K. O., & Detwiler, R. J. (1992). Reaction kinetics of Portland cement mortars hydrated at different tempera- tures. Cement and Concrete Research, 22(1), 112-120. http:// dx.doi.org/10.1016/0008-8846(92)90141-H Langley, W. S., Carette, G. G., & Malhotra, V. M. (1992). Strength development and temperature rise in large concrete blocks containing high volumes of low-calcium (ASTM Class F) fly ash. ACI Materials Journal, 89(4), 362- 368. http://dx.doi.org/10.14359/2514
- Malhotra, V. M., & Mehta, P. K. (2002). High-performance, high-volume fly ash concrete. Ottawa, Canada: Supple- mentary Cementing Materials for Sustainable Develop- ment, Inc.
- Mehta, P. K., & Monteiro, P. (2006). Concrete: Micro- structure, properties and materials (3rd ed.). New York, NY: McGraw Hill.
- Mills, R. H. (1966). Factors influencing cessation of hydration in water-cured cement pastes. In Symposium on the structure of portland cement paste and concrete (HRB Special Report No. 90, pp. 406-424). Washington, DC: Highway Research Board.
- Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed.). Upper Saddle River, NJ: Pearson.
- Pane, I., & Hansen, W. (2002). Concrete hydration and mechanical properties under nonisothermal conditions. ACI Materials Journal, 99(6), 534-542.
- Philleo, R. E. (1991). Concrete science and reality. In Mat- erials Science of Concrete II (pp. 1-8). Westerville, OH: American Ceramic Society.
- Pinto, R. C. A., & Hover, K.C. (1999). Application of matu- rity approach to setting times. ACI Materials Journal, 96(6), 686-691. http://dx.doi.org/10.14359/795
- Pinto, R. C. A., & Schindler, A. K. (2010). Unified modeling of setting and strength development. Cement and Concrete Research, 40(1), 58-65. http://dx.doi.org/10.1016/j. cemconres.2009.08.010
- Poole, J. L., Riding, K.A., Folliard, K. J., Juenger, M. C. G., & Schindler, A. K. (2007). Methods for calculating acti- vation energy for Portland cement. ACI Materials Journal, 104(1), 303-311. http://dx.doi.org/10.14359/18499
- Popovics, S. (1993). Portland cement-fly ash-silica fume systems in concrete. Advanced Cement Based Materials, 1(2), 93-91. http://dx.doi.org/10.1016/1065-7355(93)90013-E Powers, T. C., & Brownyard, T. L. (1948). Studies of the phy- sical properties of hardened Portland cement paste (Bulletin No. 22). Chicago, IL: Portland Cement Association, Research Laboratories.
- Prusinski, J. R., Fouad, F. H., & Donovan, M. J. (1993). Plant performance of high strength prestressed concrete made with Class C fly ash. In Proceedings of the 10th International Ash Use Symposium (Paper 41, Document TR-101774). Palo Alto, CA: EPRI.
- Ravina, D., & Mehta, P. K. (1986). Properties of fresh con- crete containing large amounts of fly ash. Cement and Concrete Research, 16(2), 227-238. http://dx.doi.org/10\. 1016/0008-8846(86)90139-0
- Riding, K. A. (2007). Early age concrete thermal stress mea- surement and modeling (Doctoral dissertation). Austin, TX: The University of Texas at Austin.
- RILEM CEA 42. (1981). Properties of set concrete at early ages-State-of-the-art report. Materials and Structures, 14(84), 400-450.
- RILEM TC 119-TCE. (1997). Adiabatic and semi-adiabatic calorimetry to determine the temperature increase in con- crete due to the hydration heat of the cement. In R. Springenschmid (Ed.), Prevention of thermal cracking in concrete at early ages (RILEM Report 15, pp. 315-346. London: E & FN Spon.
- Schindler, A. K. (2004). Effect of temperature on hydration of cementitious materials. ACI Materials Journal, 101(1), 72-81. http://dx.doi.org/10.14359/12990
- Schindler, A. K., & Folliard, K. J. (2005). Heat of hydration models for cementitious materials. ACI Materials Journal, 102(1), 24-33. http://dx.doi.org/10.14359/14246
- Smith, R. L., Raba, C. F., & Mearing, M. A. (1982). The utilization of Class C fly ash in concrete. In J. S. Halow & J. N. Covey (Eds.), The Challenge of Change-Sixth Inter- national Ash Utilization Symposium proceedings, Vol. 1 (DOE/METC/82-52). Morgantown, WV: National Energy Technology Laboratory, U.S. Department of Energy.
- Spiratos, N., Page ´, M., Milvaganam, N., Malhotra, V. M., & Jolicoeur, C. (2003). Superplasticizers for concrete: Fun- damentals, technology, and practice. Ottawa, Canada: Supplementary Cementing Materials for Sustainable Development.
- Taylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). Delayed ettringite formation. Cement and Concrete Research, 31(5), 683-693. http://dx.doi.org/10.1016/S0008- 8846(01)00466-5
- Thomas, M. (2007). Optimizing the use of fly ash in concrete. Portland Cement Association. Skokie, IL. 24 pages.
- Thomas, M. D. A, Mukherjee, P. K., Sato, J. A., & Everitt, M. F. (1995). Effect of fly ash compsotion on the thermal cracking of concrete. ACI Special Publication, 153, 81-98. http://dx.doi.org/10.14359/1025
- Wade, S. A., Nixon, J. M., Schindler, A. K., & Barnes, R. W. (2004). Setting behavior of concrete cured at fluctuating temperatures. Transportation Research Board annual meet- ing compendium of papers [CD-ROM]. Washington, DC: Transportation Research Board.
- Weakley, R. W. (2010). Evaluation of semi-adiabatic calori- metry to quantify concrete setting (Master's thesis). Auburn, AL: Auburn University.
- ACI Committee 231. (2010). Report on early-age cracking: Causes, measurement and mitigation (ACI 231R-10). Farm- ington Hills, MI: American Concrete Institute.
- ACI Committee 232. (1996). Use of fly ash in concrete (ACI 232.2R-96). Farmington Hills, MI: American Concrete Institute.
- ASTM C1608-07. (2007). Standard test method for chemical shrinkage of hydraulic cement paste. West Conshohocken, PA: ASTM International.
- Bentur, A. (Ed.). (2003). Early age cracking in cementitious systems-Report of RILEM Technical Committee 181- EAS-Early age shrinkage induced stresses and cracking in cementitious systems (RILEM Report 25). Paris, France: RILEM Publications SARL.
- Bentz, D. P. (2010a). Blending different fineness cements to engineer the properties of cement-based materials. Maga- zine of Concrete Research, 62(5), 327-338. http://dx.doi.org/ 10.1680/macr.2008.62.5.327
- Bentz, D. P. (2010b). Powder additions to mitigate retardation in high-volume fly ash mixtures. ACI Materials Journal, 107(5), 508-514. http://dx.doi.org/10.14359/51663971
- Bentz, D. P., Barrett, T., De la Varga, I., & Weiss, W. J. (2012). Relating compressive strength to heat release in mortars. Advances in Civil Engineering Materials, 1(1), 1-14. https://doi.org/10.1520/ACEM20120002
- Bentz, D. P., Dura ´n-Herrera, A., & Galvez-Moreno, D. (2012). Comparison of ASTM C311 strength activity index testing vs. testing based on constant volumetric propor- tions. Journal of ASTM International, 9(1), 1-7. https://doi. org/10.1520/JAI104138
- Bentz, D. P., & Ferraris, C. F. (2010). Rheology and setting of high volume fly ash mixtures. Cement and Concrete Com- posites, 32(4), 265-270. http://dx.doi.org/10.1016/j.cemcon comp.2010.01.008
- Bentz, D. P., & Jensen, O. M. (2006). Mitigation strategies for autogenous shrinkage cracking. Cement and Concrete Composites, 26(6), 677-685. http://dx.doi.org/10.1016/ S0958-9465(03)00045-3
- Bentz, D. P., Lura, P., & Roberts, J. W. (2005). Mixture pro- portioning for internal curing. ACI Concrete International, 27(2), 35-40.
- Bentz, D. P., & Peltz, M. A. (2008). Reducing thermal and autogenous shrinkage contributions to early-age cracking. ACI Materials Journal, 105(4), 414-420. http://dx.doi.org/ 10.14359/19904
- Bentz, D. P., Sato, T., De la Varga, I., & Weiss, W. J. (2012). Fine limestone additions to regulate setting in high volume fly ash mixtures. Cement and Concrete Composites, 34(1), 11-17. http://dx.doi.org/10.1016/j.cemconcomp.2011.09.004
- Bilodeau, A., Sivasundaram, V., Painter, K., & Malhotra, V. (1994). Durability of concrete incorporating high volumes of fly ash from sources in the USA. ACI Materials Journal, 91(1), 3-12. http://dx.doi.org/10.14359/4411
- Bentz, D. P., & Snyder, K. A. (1999). Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate. Cement and Concrete Research, 29(11), 1863-1867. http://dx.doi.org/10.1016/S0008-8846 (99)00178-7
- Bentz, D. P., & Weiss, W. J. (2011). Internal curing: A 2010 state-of-the-art review. Washington, DC: U.S. Department of Commerce, National Institute of Standards and Tech- nology. Retrieved from http://ws680.nist.gov/publication/ get_pdf.cfm?pub_id5907729
- Brown, M., Smith, C., Sellers, G., Folliard, K., & Breen, J. (2007). Use of alternative materials to reduce shrinkage cracking in bridge decks. ACI Materials Journal, 104(6), 629-637. http://dx.doi.org/10.14359/18967
- Castro, J., De la Varga, I., & Weiss, J. (2012). Using iso- thermal calorimetry to assess water absorption of fine LWA in mortars. Journal of Materials in Civil Engineering, 24(8), 996-1005. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533\. 0000496
- Castro, J., Keiser, L., Golias, M., & Weiss, J. (2011). Absorp- tion and desorption properties of fine lightweight aggre- gate for application to internally cured concrete mixtures. Cement and Concrete Composites, 33(10), 1001-1008. http:// dx.doi.org/10.1016/j.cemconcomp.2011.07.006
- Davis, R. E., Carlson, R. W., Kelly, J. W., & Davis, A. G. (1937). Properties of cements and concretes containing fly ash. ACI Journal Proceedings, 33(5), 577-612. http://dx.doi. org/10.14359/8435
- Geiker, M. (1983). Studies of Portland cement hydration by measuring of chemical shrinkage and a systematic evalua- tion of hydration curves by means of the dispersion model (Doctoral dissertation). Kongens Lyngby: Technical Univer- sity of Denmark.
- Gurney, L., Bentz, D. P., Sato, T., & Weiss, W. J. (2012). Reducing set retardation in high volume fly ash mixtures with the use of limestone: Improving constructability for sustainability. Transportation Research Record, 2290, 139- 146. http://dx.doi.org/10.3141/2290-18
- Halstead, W. J. (1986). Use of fly ash in concrete (NCHRP Synthesis 127). Washington, DC: Transportation Research Board, National Research Council. Retrieved from http:// onlinepubs.trb.org/Onlinepubs/nchrp/nchrp_syn_127.pdf
- Hansen, T. C. (1990). Long-term strength of high fly ash concretes. Cement and Concrete Research, 20(2), 193-196. http://dx.doi.org/10.1016/0008-8846(90)90071-5
- Helmuth, R. (1987). Fly ash in cement and concrete. Skokie, IL: Portland Cement Association.
- Henkensiefken, R., Castro, J., Bentz, D., Nantung, T., & Weiss, J. (2009). Water absorption in internally cured mor- tar made with water-filled lightweight aggregate. Cement and Concrete Research, 39(10), 883-892. http://dx.doi.org/ 10.1016/j.cemconres.2009.06.009
- INDOT. (2012). Concrete pavements. Section 500 in 2012 standard specifications. Indianapolis, IN: Indiana Depart- ment of Transportation. Retrieved from http://www.in.gov/ dot/div/contracts/standards/book/sep11/5-2012.pdf Jensen, O. M., & Hansen, P. F. (2001). Water-entrained cement- based materials: I. Principles and theoretical background. Cement and Concrete Research, 31(4), 647-654. http://dx. doi.org/10.1016/S0008-8846(01)00463-X
- Kantro, D. L. (1980). Influence of water-reducing admixtures on properties of cement paste-a miniature slump test. Cement, Concrete and Aggregates, 2(2), 95-102. https://doi. org/10.1520/CCA10190J
- Kovler, K., & Jensen, O. M. (Eds.). (2007). Internal curing of concrete-State of the art report of RILEM Technical Committee 196-ICC (RILEM Report 41). Paris, France: RILEM Publications SARL.
- Krishnan, A., Mehta, J. K., Olek, J., & Weiss, W. J. (2006). Technical issues related to the use of fly ash and slag during late-fall (low temperature) construction season (Joint Trans- portation Research Program Publication No. FHWA/IN/ JTRP-2005/05). West Lafayette, IN: Purdue University. http://dx.doi.org/10.5703/1288284313382
- L'Hermite, R. G. (1962). Volume changes of concrete. In Chemistry of cement: Proceedings of the Fourth International Symposium, Vol. 1 (pp. 659-694). Washington, DC: U.S. Department of Commerce.
- Le Chatelier, H. (1900). Sur les Changements de Volume qui Accompagnent le durcissement des Ciments. Bulletin Societe de l'Encouragement pour l'Industrie Nationale, Seme serie, tome 5, Paris.
- Lura, P., Winnefeld, F., & Klemm, S. (2010). Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. Journal of Thermal Analysis and Calorimetry, 101(3), 925-932. http://dx.doi.org/10.1007/ s10973-009-0586-2
- Malhotra, V. M. (1990). Durability of concrete incorporating high-volume of low calcium (ASTM Class F) fly ash. Cement and Concrete Composites, 12(4), 271-277. http://dx. doi.org/10.1016/0958-9465(90)90006-J
- Malhotra, V. M. (1999a). Making concrete ''greener'' with fly ash. ACI Concrete International, 21(5), 61-66.
- Malhotra, V. M. (1999b). Role of supplementary cementing materials in reducing greenhouse gas emissions. In O. E. Gjorv & K. Sakai (Eds.), Concrete technology for a sustain- able development in the 21st century. London, UK: E & FN Spon Press.
- Malhotra, V. M., & Ramezanianpour, A. (1994). Fly ash in concrete (2nd ed.). Ottawa, Canada: CANMET, Canada Centre for Mineral and Energy Technology.
- McCaffrey, R. (2002). Climate change and the cement indus- try. Global Cement and Lime Magazine (Environmental Special Issue), 15-19.
- Mehta, P. K. (2002). Greening of the concrete industry for sustainable development. ACI Concrete International, 24(7), 23-28.
- Naik, T., Singh, S., & Ramme, B. (1998). Mechanical pro- perties and durability of concrete made with blended fly ash. ACI Materials Journal, 95(4), 454-462. http://dx.doi. org/10.14359/388
- Neuwald, A., Krishnan, A., Weiss, W. J., Olek, J., & Nantung, T. E. (2003). Concrete curing and its relationship to measured scaling in concrete containing fly ash. In Transportation Research Board annual compendium of papers [CD-ROM].
- Washington, DC: Transportation Research Board.
- NYSDOT. (2008). Moisture content of lightweight fine aggre- gate (Test Method No. NY 703-19 E). Albany, NY: New York State Department of Transportation, Materials Bureau.
- Peethamparan, S., Weissinger, E., Vocaturo, J., Zhang, J., & Scherer, G. (2010). Monitoring chemical shrinkage using pressure sensors. ACI Special Publication, 270, 77-88. http://dx.doi.org/10.14359/51663740
- Philleo, R. E. (1991). Concrete science and reality. In Mater- ials Science of Concrete II (pp. 1-8). Westerville, OH: American Ceramic Society.
- Pour-Ghaz, M., Castro, J., Kladivko, E. J., & Weiss, J. (2011). Characterizing lightweight aggregate desorption at high relative humidities using a pressure plate apparatus. Journal of Materials in Civil Engineering, 24(8), 961-969. http://dx. doi.org/10.1061/(ASCE)MT.1943-5533.0000422
- Powers, T. C. (1948). A discussion of cement hydration in relation to the curing of concrete (Bulletin No. 25). Chicago, IL: Portland Cement Association, Research Laboratories.
- Ramlochan, T., Zacarias, P., Thomas, M. D. A., & Hooton, R. D. (2003). The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I: Expansive behaviour. Cement and Concrete Research, 33(6), 807-814. http://dx.doi.org/10.1016/S0008-8846(02)01066-9
- Sant, G., Lura, P., & Weiss, J. (2006). Measurement of volume change in cementitious materials at early ages: Review of testing protocols and interpretation of results. Transport Research Record, 1979, 21-29. http://dx.doi.org/10.3141/ 1979-05
- Shah, S. P., & Weiss, W. J. (2000). High performance con- crete: Strength, permeability, and shrinkage cracking. In Symposium proceedings: PCI/FHWA/FIB International Symposium on High Performance Concrete, September 25- 27, 2000, Orlando, Florida: The economical solution for durable bridges and transportation structures (pp. 331-339). Chicago, IL: Precast/Prestressed Concrete Institute.
- Shah, S., Weiss, W. J., & Yang, W. (1997). Shrinkage cracking in high performance concrete. In L. S. Paul (Ed.), Sym- posium proceedings: PCI/FHWA International Symposium on High Performance Concrete, October 20-22, New Orleans, Louisiana: Advanced Concrete Solutions for Bridges and Transportation Structures. Chicago, IL: Precast/Prestressed Concrete Institute.
- Shah, S., Weiss, W. J., & Yang, W. (1998). Shrinkage cracking- Can it be prevented? ACI Concrete International, 20(4), 51-55.
- Shin, K.-J., Castro, J., Schlitter, J., Golias, M., Pour-Ghaz, M., Henkensiefken, R., Weiss, J. (2010). The role of internal curing as a method to improve durability. In S.-H. Kim & K. Y. Ann (Eds.), Handbook on concrete durability (pp. 379-428). Republic of Korea: Middleton Publishing.
- Shin, K.-J., Bucher, B. E., & Weiss, W. J. (2011). The role of lightweight synthetic particles on the restrained shrinkage cracking behavior of mortar. Journal of Civil Engineering Materials, 23(5), 597-605. http://dx.doi.org/10.1061/ (ASCE)MT.1943-5533.0000213
- Thomas, M. D. A., & Matthews, J. D. (1992). Carbonation of fly ash concrete. Magazine of Concrete Research, 44(160), 217-228. http://dx.doi.org/10.1680/macr.1992.44\. 160.217
- Weiss, W. J., Yang, W., & Shah, S. P. (1999). Factors influ- encing durability and early-age cracking in high strength concrete structures. ACI Special Report, 189, 387-409. http://dx.doi.org/10.14359/5863
- Worrell, E., Price, L., Martin, N., Hendriks, C., & Ozawa, L. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303-329. http://dx.doi.org/10.1146/annurev.energy.26.1.303 REFERENCES
- American Concrete Institute (ACI). (2008). [Press release]. Retrieved from http://www.concrete.org/general/Press Releases/sdc%20pca%20meeting.htm ASTM C305-06. (2006). Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic con- sistency. West Conshohocken, PA: ASTM International.
- ASTM E408-71. (2008). Standard test methods for total normal emittance of surfaces using inspection-meter techniques. West Conshohocken, PA: ASTM International.
- Bentz, D. P. (2007). Transient plane source measurements of the thermal properties of hydrating cement pastes. Mat- erials and Structures, 40(10), 1073-1080. http://dx.doi.org/ 10.1617/s11527-006-9206-9
- Bentz, D. P., Peltz, M. A., Dura ´n-Herrera, A., Valdez, P., & Jua ´rez, C. A. (2011). Thermal properties of high-volume fly ash mortars and concretes. Journal of Building Physics, 34(3), 263-275. http://dx.doi.org/10.1680/macr.2008.62.5.327
- Bentz, D. P., & Snyder, K. A. (1999). Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate. Cement and Concrete Research, 29(11), 1863-1867. http://dx.doi.org/10.1016/S0008-8846 (99)00178-7
- Bentz, D. P., & Weiss, W. J. (2011). Internal curing: A 2010 state-of-the-art review. Washington, DC: U.S. Department of Commerce, National Institute of Standards and Tech- nology. Retrieved from http://ws680.nist.gov/publication/ get_pdf.cfm?pub_id5907729 TABLE 3.4
- Measured Thermal Properties of the Five Mortar Mixtures Bevans, J. T., Luedke, E. E., & Nelson, K. E. (1966). A device for the rapid measurement of total emittance. Journal of Spacecraft and Rockets, 3(5), 758-760. http://dx.doi.org/10\. 2514/3.25051
- Castro, J., Keiser, L., Golias, M., & Weiss, J. (2011). Absor- ption and desorption properties of fine lightweight aggre- gate for application to internally cured concrete mixtures. Cement and Concrete Composites, 33(10), 1001-1008. http:// dx.doi.org/10.1016/j.cemconcomp.2011.07.006
- De la Varga, I., Castro, J., Bentz, D., & Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites, 34(9), 1001-1008. http://dx.doi.org/10.1016/j.cemconcomp.2012\. 06.008
- Kantro, D. L. (1980). Influence of water-reducing admixtures on properties of cement paste-a miniature slump test. Cement, Concrete and Aggregates, 2(2), 95-102. https://doi. org/10.1520/CCA10190J
- NYSDOT. (2008). Moisture content of lightweight fine aggregate (Test Method No. NY 703-19 E). Albany, NY: New York State Department of Transportation, Materials Bureau.
- Raoufi, K., Schlitter, J., Bentz, D., & Weiss, J. (2011). Para- metric assessment of stress development and cracking in internally cured restrained mortars experiencing autoge- nous deformations and thermal loading. Advances in Civil Engineering, 2011. http://dx.doi.org/10.1155/2011/870128
- Schlitter, J. L., Senter, A. H., Bentz, D. P., Nantung, T., & Weiss, W. J. (2010). A dual concentric ring test for evaluat- ing residual stress development due to restrained volume change. Journal of ASTM International, 7(9), 1-13. https:// doi.org/10.1520/JAI103118
- ACI Committee 232. (2003). Use of fly ash in concrete (ACI 232.2R-03). Farmington Hills, MI: American Concrete Institute.
- ASTM C1760-12. (2012). Standard test method for bulk electrical conductivity of hardened concrete. West Consho- hocken, PA: ASTM International.
- Barneyback, R. S., & Diamond, S. (1981). Expression analysis of pore fluids from hardened cement pastes and mortars. Cement and Concrete Research, 11(2), 279-285. http://dx. doi.org/10.1016/0008-8846(81)90069-7
- Bentz, D. P. (2009). Influence of internal curing using light- weight aggregates on interfacial transition zone percolation and chloride ingress in mortars. Cement and Concrete Com- posites, 31(5), 285-289. http://dx.doi.org/10.1016/j.cemcon- comp.2009.03.001
- Bentz, D. P., & Stutzman, P. E. (2008). Internal curing and microstructure of high performance mortars. In D. P. Bentz & B. J. Mohr (Eds.), ACI SP-256: Internal curing of high performance concretes-Laboratory and field experiences (pp. 81-90). Farmington Hills, MI: American Concrete Institute.
- Bentz, D. P., & Weiss, W. J. (2011). Internal curing: A 2010 state-of-the-art review. Washington, DC: U.S. Department of Commerce, National Institute of Standards and Tech- nology. Retrieved from http://ws680.nist.gov/publication/ get_pdf.cfm?pub_id5907729
- Castro, J. (2011). Moisture transport in cement based materials: Applications to transport test and internal curing (Doctoral dissertation). West Lafayette, IN: Purdue University.
- Castro, J., Bentz, D., & Weiss, J. (2011). Effect of sample conditioning on the water absorption of concrete. Cement and Concrete Composites, 33(8), 805-813. http://dx.doi.org/ 10.1016/j.cemconcomp.2011.05.007
- Castro, J., Keiser, L., Golias, M., & Weiss, J. (2011). Absorp- tion and desorption properties of fine lightweight aggre- gate for application to internally cured concrete mixtures. Cement and Concrete Composites, 33(10), 1001-1008. http:// dx.doi.org/10.1016/j.cemconcomp.2011.07.006
- De la Varga, I., Castro, J., Bentz, D., & Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites, 34(9), 1001-1008. http://dx.doi.org/10.1016/j.cemconcomp.2012\. 06.00
- Delagrave, A., Bigas, J. P., Ollivier, J. P., Marchand, J., & Pigeon, M. (1997). Influence of the interfacial zone on the chloride diffusivity of mortars. Advanced Cement Based Materials, 5(3-4), 86-92. http://dx.doi.org/10.1016/S1065- 7355(96)00008-9
- EuroLightCon. (1998). LWAC material properties state-of- the-art. In Economic design and construction with light weight aggregate concrete. Brite-EuRam III, 47-8.
- Golias, M., Castro J., & Weiss J. (2012). The influence of the initial moisture content in lightweight aggregate on internal curing. Construction and Building Materials, 35, 52-62. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.074
- Golias, M., Weiss, J., & Bentz, D. (2013). Influence of expo- sure conditions on the efficiency of internal curing in concrete. Advances in Civil Engineering Materials, 2(1), 522- 533. https://doi.org/10.1520/ACEM20120023
- Hooton, D., Nagi, M. A., & Ozyildirim, H. C. (2000). The rapid chloride permeability test. HPC Bridge Views, 12, 2-4.
- Julio-Betancourt, G. A., & Hooton, R. D. (2004). Study of the Joule effect on rapid chloride permeability values and evaluation of related electrical properties of concretes. Cement and Concrete Research, 34(6), 1007-1015. http://dx. doi.org/10.1016/j.cemconres.2003.11.012
- Kantro, D. L. (1980). Influence of water-reducing admixtures on properties of cement paste-a miniature slump test. Cement, Concrete and Aggregates, 2(2), 95-102. https://doi. org/10.1520/CCA10190J.
- Luping, T. (1997). Chloride diffusion coefficient of concrete and relevant test methods: the state-of-the art and suggestions for future work (NORDTEST Project No. 1351-97). Stockholm, Sweden: RISE Research Institutes of Sweden.
- Malhotra, V. M. (1990). Durability of concrete incorporating high-volume of low calcium (ASTM Class F) fly ash. Cement and Concrete Composites, 12(4), 271-277. http://dx. doi.org/10.1016/0958-9465(90)90006-J
- Malhotra, V. M., & Mehta, P. K. (2002). High-performance, high-volume fly ash concrete. Ottawa, Canada: Supplemen- tary Cementing Materials for Sustainable Development, Inc.
- Morris, W., Moreno, E. I., & Sagu ¨e ´s, A. A. (1996). Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe. Cement and Concrete Research, 26(12), 1779-1787. http://dx.doi.org/10.1016/S0008-8846(96)00175-5
- NIST. (n.d.). Estimation of pore solution conductivity. Retrie- ved April 2013, from http://concrete.nist.gov/poresolncalc. html Nordtest. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady- state migration experiments (NT Build 492). Espoo, Finland: Nordtest. Retrieved from http://210.42.35.80/ G2S/eWebEditor/uploadfile/20110819235419966.pdf NYSDOT. (2008). Moisture content of lightweight fine aggregate (Test Method No. NY 703-19 E). Albany, NY: New York State Department of Transportation, Materials Bureau.
- Obla, K., Lobo, C., & Kim, H. (2012). Greatly increased use of fly ash in hydraulic cement concrete (HCC) for pavement layers and transportation structures: Volume I. Silver Spring, MD: NRMCA Engineering Division. Retrieved from https://www.nrmca.org/research\_engineering/Documents/ Lab_fly_ashFinal_report.pdf
- Pease, B., Hossain, A. B., & Weiss, J. (2004). Quantifying volume change, stress development, and cracking due to early-age autogenous shrinkage. ACI Special Publication, 220, 23-39. http://dx.doi.org/10.14359/13147
- Peled, A., Castro, J., & Weiss, J. (2010). Atomic force micro- scopy examinations of mortar made by using water-filled lightweight aggregate. Transportation Research Record, 2141, 92-101. http://dx.doi.org/10.3141/2141-16
- Penko, M. (1983). Some early hydration processes in cement paste as monitored by liquid phase composition measurements (Doctoral dissertation). West Lafayette, IN: Purdue Uni- versity. Retrieved from http://docs.lib.purdue.edu/disserta- tions/AAI8324046/
- Philleo, R. E. (1991). Concrete science and reality. In Mat- erials science of concrete II (pp. 1-8). Westerville, OH: American Ceramic Society.
- Riding, K. A., Poole, J. L., Schindler, A. K., Juenger, M. C. G., & Folliard, K. J. (2008). Simplified concrete resistivity and rapid chloride permeability test method. ACI Materials Journal, 105, 390-394. http://dx.doi.org/10.14359/19901
- Snyder, K. A. (2001). The relationship between the formation factor and the diffusion coefficient of porous materials saturated with concentrated electrolytes: Theoretical and experimental considerations. Concrete Science and Engi- neering, 3(12), 216-224.
- Snyder, K. A., Ferraris, C., Martys, N. S., & Garboczi, E. J. (2000). Using impedance spectroscopy to assess the viability of the rapid chloride test for determining concrete conduc- tivity. Journal of Research-National Institute of Standards and Technology, 105(4), 497-510.
- Spragg, R., Villani, C., Snyder, K., Bentz, D., Bullard, J. W., & Weiss, J. (2013). Factors that influence electrical resistivity measurements in cementitious systems. Transportation Rese- arch Record, 2342, 90-98. http://dx.doi.org/10.3141/2342-11
- Weiss, J., Bullard, J., Snyder, K., Bentz, D., & Castro, J. (2013). Electrical properties of concrete with conductive aggregate: Implications for internal curing. Unpublished manuscript, Lyles School of Civil Engineering, Purdue University.
- of Concrete Research, 62(5), 327-338. http://dx.doi.org/10\. 1680/macr.2008.62.5.327
- Bentz, D. P. (2010b). Powder additions to mitigate retardation in high-volume fly ash mixtures. ACI Materials Journal, 107(5), 508-514. http://dx.doi.org/10.14359/51663971
- Bentz, D. P., Dura ´n-Herrera, A., & Galvez-Moreno, D. (2012). Comparison of ASTM C311 strength activity index testing vs. testing based on constant volumetric proportions. Jour- nal of ASTM International, 9(1), 1-7. https://doi.org/10\. 1520/JAI104138
- Bentz, D. P., & Ferraris, C. F. (2010). Rheology and setting of high volume fly ash mixtures. Cement and Concrete Com- posites, 32(4), 265-270. http://dx.doi.org/10.1016/j.cemcon comp.2010.01.008
- Bentz, D. P., Ferraris, C. F., De la Varga, I., Peltz, M. A., & Winpigler, J. (2010). Mixture proportioning options for improving high volume fly ash concretes. International Jour- nal of Pavement Research and Technology, 3(5), 234-240.
- Bentz, D. P., Sato, T., De la Varga, I., & Weiss, W. J. (2012). Fine limestone additions to regulate setting in high volume fly ash mixtures. Cement and Concrete Composites, 34(1), 11-17. http://dx.doi.org/10.1016/j.cemconcomp.2011.09.004
- De la Varga, I. (2013). Increased fly ash volume and internal cur- ing in concrete structures and pavements (Doctoral disserta- tion). West Lafayette, IN: Purdue University. Retrieved from http://docs.lib.purdue.edu/dissertations/AAI3605112/ De la Varga, I., Castro, J., Bentz, D., & Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites, 34(9), 1001-1008. http://dx.doi.org/10.1016/j.cemconcomp.2012\. 06.008
- De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B. (2011). Hydration mechan- isms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291. http://dx.doi.org/10.1016/j.cemconres.2010.11.014
- De Weerdt, K., Kjellsen, K. O., Sellevold, E., & Justnes, H. (2011). Synergy between fly ash and limestone powder in ternary cements. Cement and Concrete Composites, 33(1), 30-38. http://dx.doi.org/10.1016/j.cemconcomp.2010.09.006
- Gutteridge, W. A., & Dalziel, J. A. (1990). Filler cement: The effect of the secondary component on the hydration of Portland cement: Part I. A fine non-hydraulic filler. Cement and Concrete Research, 20(5), 778-782. http://dx.doi.org/10\. 1016/0008-8846(90)90011-L
- Sandberg, P. J., & Roberts, L. R. (2005). Cement-admixture interactions related to aluminate control. Journal of ASTM International, 2(6), 1-14.
- Sato, T., & Beaudoin, J. (2011). Effect of nano-CaCO 3 on hydration of cement containing supplementary cementi- tious materials. Advances in Cement Research, 23(1), 1-11. http://dx.doi.org/10.1680/adcr.9.00016
- Sato, T., Daillo, F., & Trischuk, K. (2011). Dispersion of nano- CaCO 3 coated with various surfactants for accelerating hydration of cement. Unpublished report.