Runtime Energy Estimation and Route Optimization for Autonomous Underwater Vehicles (original) (raw)
Related papers
Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption
In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.
Towards Energy-Aware Feedback Planning for Long-Range Autonomous Underwater Vehicles
Frontiers in Robotics and AI, 2021
Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These new vehicles provide an effective solution to study different oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the ocean environment has forces and moments from changing water currents which are generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not practical to generate a simple trajectory from an initial location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due to disturbances resulted from water currents. Since state estimation remains challenging in underwater conditions, feedbac...
Ship Technology …, 2008
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
A Comprehensive Review of Path Planning Algorithms for Autonomous Underwater Vehicles
International Journal of Automation and Computing
The underwater path planning problem deals with finding an optimal or sub-optimal route between an origin point and a termination point in marine environments. The underwater environment is still considered as a great challenge for the path planning of autonomous underwater vehicles (AUVs) because of its hostile and dynamic nature. The major constraints for path planning are limited data transmission capability, power and sensing technology available for underwater operations. The sea environment is subjected to a large set of challenging factors classified as atmospheric, coastal and gravitational. Based on whether the impact of these factors can be approximated or not, the underwater environment can be characterized as predictable and unpredictable respectively. The classical path planning algorithms based on artificial intelligence assume that environmental conditions are known apriori to the path planner. But the current path planning algorithms involve continual interaction wit...
2007
In this paper we consider the implementation of time and energy efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected to the results of the application of the maximum principle to the controlled mechanical system. We use a numerical algorithm to compute efficient trajectories designed using geometric control theory to optimize a given cost function. Experimental results are shown for the time minimization problem.
Design and implementation of time efficient trajectories for autonomous underwater vehicles
2008
This paper discusses control strategies adapted for practical implementation and efficient motion of autonomous underwater vehicles (AUVs). For AUVs we would like efficiency in both the measured time and the energy consumption, the mission dictating the weight to put on each of these cost. As a first approach to this problem, we focus in this paper on time minimization.