Effect of pressure on the neutron spin resonance in the unconventional superconductor FeTe_{0.6}Se_{0.4} (original) (raw)

Structural and optical investigations of the iron-chalcogenide superconductor Fe$_{1.03}$Se$_{0.5}$Te$_{0.5}$ under high pressure

Iron-chalcogenide superconductor Fe$_{1.03}$Se$_{0.5}$Te$_{0.5}$ has been investigated under high pressure using synchrotron based x-ray diffraction and mid-infrared reflectance measurements at room temperature. Pressure dependence of the superconducting transition temperature (T$_c$) of the same sample has been determined by temperature-dependent resistance measurements up to 10 GPa. Although the high pressure orthorhombic phase ($\textit{Pbnm}$) starts emerging at 4 GPa, structural transition becomes clearly observable above 10 GPa. A strong correlation is observed between the Fe(Se,Te)$_{4}$ tetrahedral deformation in the tetragonal phase ($\textit{P4/nmm}$) and the sharp rise of T$_c$ up to sim\simsim4 GPa, above which T$_c$ is found to be almost pressure independent at least up to 10 GPa. A subtle structural modification of the tetragonal phase is noticed above 10 GPa, suggesting a structural transition with possible Fe$^{2+}$ spin-state transition. The evolution with pressure of t...