Comparative Study and Experimental Implementation of Different Path Tracking Controllers in Mobile Robots (original) (raw)
Related papers
Comparative Study of Three Different Path Tracking Controls in Mobile Robots
International Journal of Computer Applications, 2013
This paper presents a comparative study of three different path tracking control laws for the formation of a group of nonholonomic mobile robots. By introducing a unified error of the formation and trajectory tracking using; the dynamic feedback linearization control [1], dynamic-static feedback linearization control [2] and nonlinear time-invariant control [3] are compared. The simulations results show that the dynamic-static feedback linearization technique presents a stable tracking with smoother behaviour and avoiding discontinuities for tracking trajectory of the robot leader. Finally, this method was implemented experimentally in three different paths formatting a simple triangle with three mobile robots in a leader-follower type motion. Moreover, the analysis in this paper reveals some important issues raising that the following control on this system can be extended to underactuated AUVs in future work.
Formation control of nonholonomic mobile robots
2006 American Control Conference, 2006
In this paper, formation control of a group of nonholonomic wheeled robots are considered. By introducing a unified error of the formation and trajectory tracking, state feedback control laws are proposed for formation control with a desired trajectory. Graph theory and Lyapunov theory are used in the control design. After that, by introducing observers, output feedback control laws are also proposed for the formation control. Simulation study shows the proposed controllers are effective.
Implementation of Leader-Follower Formation Control of a Team of Nonholonomic Mobile Robots
International Journal of Computers Communications & Control
A control method for a team of multiple mobile robots performing leader-follower formation by implementing computing, communication, and control technol-ogy is considered. The strategy expands the role of global coordinator system andcontrollers of multiple robots system. The global coordinator system creates no-collision trajectories of the virtual leader which is the virtual leader for all vehicles,sub-virtual leaders which are the virtual leader for pertinent followers, and virtualfollowers. The global coordinator system also implements role assignment algorithmto allocate the role of mobile robots in the formation. The controllers of the individualmobile robots have a task to track the assigned trajectories and also to avoid collisionamong the mobile robots using the artificial potential field algorithm. The proposedmethod is tested by experiments of three mobile robots performing leader-followerformation with the shape of a triangle. The experimental results show the robustness...
Nonsingular formation control of cooperative mobile robots via feedback linearization
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005
This paper addresses the control of a leaderfollower formation where the leader robot has its own target and the follower robots are constrained by the specified formation tasks. The dynamics of the leader robot with nonholonomic constraint is explicitly integrated into the formation system to yield a centralized coordinating controller. As a result there is no need to assume the motion of the leader separatively when we develop cooperative formation controllers for coordinating the robots. The feedback linearization is used to deal with the nonlinear formation control of a team of autonomous mobile robots with nonholonomic constraints. Although the nonlinear formation system under consideration can be exactly linearized by taking advantage of dynamic feedback linearization, there exists structural singularity which may pose serious problems in practice. To solve this singular problem a new formation model for controlling the leader-follower formation in a cooperative manner is developed. This new formation model can be extended to studying other control and learning issues in multi-robot systems for both cooperation and noncooperation. The internal dynamics is derived and proven to be globally stable under the stable linear controller obtained via the partially linearized dynamics. To demonstrate the performance of the developed formation controller, simulation results are provided.
Formation Control and Trajectory Tracking of Nonholonomic Mobile Robots
IEEE Transactions on Control Systems Technology, 2018
In this brief, we design Lyapunov-based control laws to achieve two multi-objective tasks for a network of open-loop unstable, nonholonomic mobile inverted pendulum (MIP) robots, using a connected undirected graph for inter-agent communication. Using the first protocol, translationally invariant formations are achieved along with the synchronization of attitudes and heading velocities to desired values. Using the second protocol, the robots move into a formation and asymptotically track a trajectory. The control laws are based on the kinematic model of the mobile robot, and control torques for the MIPs are extracted using a two-loop control architecture. Both the protocols guarantee boundedness of the linear heading velocity, which is necessary for the stability of the two-loop control architecture. The proposed control laws are experimentally validated on indigenously built MIP robots.
Formation control and trajectory tracking of mobile robotic systems – a Linear Algebra approach
Robotica, 2010
A novel approach for trajectory tracking of a mobile-robots formation by using linear algebra theory and numerical methods is presented in this paper. The formation controller design is based on the formation states concept and the dynamic model of a unicycle-like nonholonomic mobile robot. The proposed control law designed is decentralized and scalable. Simulations and experimental results confirm the feasibility and the effectiveness of the proposed controller and the advantages of using the dynamic model of the mobile robot. By using this new strategy, the formation of mobile robots is able to change its configuration (shape and size) and follow different trajectories in a precise way, minimizing the tracking and formation errors.
On the Control of a Leader-Follower Formation of Nonholonomic Mobile Robots
2006
This paper deals with leader-follower formations of nonholonomic mobile robots. Formalizing the problem in a geometric framework, it is proposed a controller that is alternative to those existing in the literature. It is shown that the geometry of the formation imposes a bound on the maximum admissible curvature of leader trajectory. A peculiar characteristic of the proposed strategy is that the position of the followers is not fixed with respect to the leader reference frame but varies in suitable cones. The formation geometry adapts to the followers dynamics and this allows lower control effort with respect to other approaches based on rigid formations.
International Journal of Systems, Control and Communications
This paper presents a novel robust and autonomous formation control scheme for wheeled mobile robots in the leader-follower formation control framework considering their non-holonomic constraints. In the proposed formation control scheme, the leader robot of the group plans its path of navigation autonomously in a cluttered environment by employing incremental path planning by modified artificial potential field. Then, the follower robots in the group plan their path in order to follow the leader robot by maintaining a particular formation using the separation-bearing (l-ψ) control. Then the formation control problem has been transformed into a trajectory tracking control problem. The kinematic control component of the tracking controller provides the necessary velocity input for eliminating the non-holonomic constraints, whereas, the sliding mode augmented robust trajectory tracking control component minimises the effects of nonlinearities, model uncertainties, parameter variations, and disturbances. The effectiveness of the proposed control law has been established by simulation studies.
A Stable Control Algorithm for Multi Robot Formation
IOP Conference Series: Materials Science and Engineering
This paper presents the developed trajectory tracking controller for a formation of nonholonomic robots, which combines features from the leader-follower and virtual-structure approaches. The implemented decentralized control strategy allows the robots to be relatively independent and to switch easily between the executed individual tasks and the collective tasks. Convergence is thoroughly analyzed and guarantied using the Lyapunov approach.
Stable formation control for a team of wheeled mobile robots
2007
This paper presents a novel control algorithm and visual measurement for the autonomous navigation of a non-holonomic robot team while preserving a specified formation. The control errors are defined relative to the leader robot of the team in terms of the actual position of each robot and its desired position in the formation. The stability analysis as well as a robustness analysis for the proposed control system is presented. This paper also includes some experimental results to show the good performance of the proposed control system.