Papel de la inflamación en la etiopatogenia de la EPOC (original) (raw)

Abstract

La inflamación es una de las primeras respuestas que presenta el sistema inmunitario del organismo para hacer frente a cualquier tipo de agresión. La lesión que produce la inhalación del humo del tabaco desarrolla una respuesta inflamatoria que inicialmente se desencadena de manera innata, como sucede en cualquier tipo de agresión. Posteriormente se ve estimulada por la liberación de diferentes factores químicos que potencian la respuesta inflamatoria y, finalmente, dependiendo del tipo de agresión, llega a activar la inmunidad adquirida que, mediada por la participación de los linfocitos, sirve para establecer una barrera física contra la propagación de la lesión y para promover la recuperación del tejido pulmonar dañado. Sin embargo, el equilibrio entre inflamación y reparación no siempre se mantiene, como sucede en el caso de la enfermedad pulmonar obstructiva crónica (EPOC), donde aparecen marcados cambios en la arquitectura de las vías aéreas, espacios alveolares y arterias pulmonares, que suponen el trasfondo estructural de los cambios funcionales característicos de esta enfermedad. Siendo la EPOC una enfermedad básicamente pulmonar, disponemos de datos acerca de la existencia de una inflamación asociada a nivel sistémico. Los orígenes de esta inflamación sistémica no están aclarados, hay información acerca de un origen común directo del humo del tabaco a todos los niveles y datos acerca de una inflamación primaria pulmonar que, por extensión, afecta secundariamente a nivel sistémico. En la presente revisión se describen los principales mecanismos implicados en el proceso inflamatorio existente a nivel pulmonar y a nivel sistémico en la EPOC.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (55)

  1. Rahman IMW. Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease. Thorax. 1996;51:348-50.
  2. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obs- tructive pulmonary disease. Proc Am Thorac Soc. 2005;2:50-60.
  3. Enami S HM, Colussi AJ. Acidity enhances the formation of a persistent ozonide at aqueous ascorbate/ozone gas interfaces. Proc Natl Acad Sci USA. 2008;105: 7365-9.
  4. Li XY, Donaldson K, MacNee W. Mechanisms of cigarette smoke induced increased airspace permeability. Thorax. 1996;51:465-71.
  5. Jones JG, Lawler P, Hulands G, Crawley JC, Veall N. Increased alveolar epithelial per- meability in cigarette smokers. Lancet. 1980;1:66-8.
  6. Rao T, Richardson B. Environmentally induced autoimmune diseases: potential mechanisms. Environ Health Perspect. 1999;107 Suppl 5:737-42.
  7. Krieg AM, Vollmer J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev. 2007;220:251-69.
  8. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like recep- tors: networks regulated by Toll-like receptors mediate innate and adaptive immu- nity. Clin Exp Immunol. 2007;147:199-207.
  9. Crespo-Lessmann A, Juárez-Rubio C, Plaza-Moral V. Role of toll-like receptors in respiratory diseases. Arch Bronconeumol. 2010;46;135-42.
  10. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301-5.
  11. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol. 2006;6:823-35.
  12. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloprotei- nases and its effect on leukocyte migration and inflammation. J Leukoc Biol. 2007; 82:1375-81.
  13. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, et al. Antielas- tin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007;13: 567-9.
  14. McWilliam AS, Napoli S, Marsh AM, Pemper FL, Nelson DJ, Pimm CL, et al. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J Exp Med. 19961;184:2429-32.
  15. Lambrecht BN, Prins JB, Hoogsteden HC. Lung dendritic cells and host immunity to infection. Eur Respir J. 2001;18:692-704.
  16. Górska KM-WM, Krenke R. Airway inflammation in chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2010;16:89-96.
  17. Freeman CM, Curtis JL, Chensue SW. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pul- monary disease severity. Am J Pathol. 2007;171:767-76.
  18. Saetta M, Mariani M, Panina-Bordignon P, Turato G, Buonsanti C, Baraldo S, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;165:1404-9.
  19. Saetta M, Baraldo S, Corbino L, Turato G, Braccioni F, Rea F, et al. CD8+ ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160:711-7.
  20. Vernooy JH, Moller GM, Van Suylen RJ, Van Spijk MP, Cloots RH, Hoet PH, et al. Increased granzyme A expression in type II pneumocytes of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175: 464-72.
  21. Chrysofakis G, Tzanakis N, Kyriakoy D, Tsoumakidou M, Tsiligianni I, Klimathianaki M, et al. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest. 2004;125:71-6.
  22. Sullivan AK, Simonian PL, Falta MT, Mitchell JD, Cosgrove GP, Brown KK, et al. Oligo- clonal CD4+ T cells in the lungs of patients with severe emphysema. Am J Respir Crit Care Med. 2005;172:590-6.
  23. Di Stefano A, Caramori G, Capelli A, Gnemmi I, Ricciardolo FL, Oates T, et al. STAT4 activation in smokers and patients with chronic obstructive pulmonary di- sease. Eur Respir J. 2004;24:78-85.
  24. Turato G, Zuin R, Miniati M, Baraldo S, Rea F, Beghe B, et al. Airway inflammation in severe chronic obstructive pulmonary disease: relationship with lung function and radiologic emphysema. Am J Respir Crit Care Med. 2002;166:105-10.
  25. Van der Strate BW, Postma DS, Brandsma CA, Melgert BN, Luinge MA, Geerlings M, et al. Cigarette smoke-induced emphysema: A role for the B cell? Am J Respir Crit Care Med. 2006;173:751-8.
  26. Shapiro SD. End-stage chronic obstructive pulmonary disease: the cigarette is bur- ned out but inflammation rages on. Am J Respir Crit Care Med. 2001;164:339-40.
  27. Agustí A, MacNee W, Donaldson K, Cosio M. Hypothesis: does COPD have an autoimmune component? Thorax. 2003;58:832-4.
  28. Cosio MG. Autoimmunity, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease. Eur Respir J. 2004;24:3-5.
  29. Cosio MG, Saetta M, Agustí A. Immunologic aspects of chronic obstructive pulmo- nary disease. N Engl J Med. 2009;360:2445-54.
  30. Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Moore M, Sullivan A, Nicolls MR, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med. 2005;171:734-42.
  31. Kuo YB, Chang CA, Wu YK, Hsieh MJ, Tsai CH, Chen KT, et al. Identification and clinical association of anti-cytokeratin 18 autoantibody in COPD. Immunol Lett. 2010;128:131-6.
  32. Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177:156-63.
  33. Cosio M, Ghezzo H, Hogg JC, Corbin R, Loveland M, Dosman J, et al. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med. 1978;298:1277-81.
  34. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645-53.
  35. Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, et al. CD8+ T-lym- phocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157 3 Pt 1:822-6.
  36. Demedts IK DT, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathoge- nesis of COPD and pulmonary emphysema. Respir Res. 2006;7:53.
  37. Kanazawa H YJ. Elevated oxidative stress and reciprocal reduction of vascular endo- thelial growth factor levels with severity of COPD. Chest. 2005;128:3191-7.
  38. Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D, et al. Oxi- dative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol. 2003;29:88-97.
  39. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Work- shop summary. Am J Respir Crit Care Med. 2001;163:1256-76.
  40. Agustí AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chro- nic obstructive pulmonary disease. Eur Respir J. 2003;21:347-60.
  41. Wouters EF. Local and systemic inflammation in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2:26-33.
  42. Noguera A, Busquets X, Sauleda J, Villaverde JM, MacNee W, Agustí AG. Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstruc- tive pulmonary disease. Am J Respir Crit Care Med. 1998;158 5 Pt 1:1664-8.
  43. Noguera A, Batle S, Miralles C, Iglesias J, Busquets X, MacNee W, et al. Enhanced neu- trophil response in chronic obstructive pulmonary disease. Thorax. 2001;56:432-7.
  44. Burnett D, Chamba Hill SL, Stockley RA. Neutrophils from subjects with chronic obstructive lung disease show enhanced chemotaxis and extracellular proteolysis. Lancet. 1987;2:1043-6.
  45. Cataldo D, Munaut C, Noel A, Frankenne F, Bartsch P, Foidart JM, et al. Matrix meta- lloproteinases and TIMP-1 production by peripheral blood granulocytes from COPD patients and asthmatics. Allergy. 2001;56:145-51.
  46. Hageman GJ, Larik I, Pennings HJ, Haenen GR, Wouters EF, Bast A. Systemic poly (ADP-ribose) polymerase-1 activation, chronic inflammation, and oxidative stress in COPD patients. Free Radic Biol Med. 2003;35:140-8.
  47. Aldonyte R, Jansson L, Piitulainen E, Janciauskiene S. Circulating monocytes from healthy individuals and COPD patients. Respir Res. 2003;4:11.
  48. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta- analysis. Thorax. 2004;59:574-80.
  49. Broekhuizen R, Wouters EF, Creutzberg EC, Schols AM. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax. 2006;61:17-22.
  50. Agustí AG, Sauleda J, Miralles C, Gómez C, Togores B, Sala E, et al. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166:485-9.
  51. Dahl M, Tybjaerg-Hansen A, Vestbo J, Lange P, Nordestgaard BG. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chro- nic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1008-11.
  52. Di Francia M, Barbier D, Mege JL, Orehek J. Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;150 5 Pt 1:1453-5.
  53. Dietrich M, Block G, Benowitz NL, Morrow JD, Hudes M, Jacob P 3rd, et al. Vitamin C supplementation decreases oxidative stress biomarker f2-isoprostanes in plasma of nonsmokers exposed to environmental tobacco smoke. Nutr Cancer. 2003;45: 176-84.
  54. Dietrich M, Block G, Hudes M, Morrow JD, Norkus EP, Traber MG, et al. Antioxidant supplementation decreases lipid peroxidation biomarker F(2)-isoprostanes in plas- ma of smokers. Cancer Epidemiol Biomarkers Prev. 2002;11:7-13.
  55. Vernooy JH, Kucukaycan M, Jacobs JA, Chavannes NH, Buurman WA, Dentener MA, et al. Local and systemic inflammation in patients with chronic obstructive pulmo- nary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med. 2002;166:1218-24.