Characterization of Trypanosoma cruzi Sirtuins as Possible Drug Targets for Chagas Disease (original) (raw)
Related papers
Parasitology, 2014
Chagas disease, which is caused by the parasite Trypanosoma cruzi, affects approximately 7-8 million people in Latin America. The drugs available to treat this disease are ineffective against chronic phase disease and are associated with toxic side effects. Therefore, the development of new compounds that can kill T. cruzi at low concentrations is critically important. Herein, we report the effects of a novel 3-arylideneindolin-2-one that inhibits sirtuins, which are highly conserved proteins that are involved in a variety of physiological processes. The compound KH-TFMDI was tested against the epimastigote, trypomastigote and amastigote forms of T. cruzi, and its effects were evaluated using flow cytometry, light and electron microscopy. KH-TFMDI inhibited the replication of T. cruzi intracellular amastigotes with an IC 50 of 0·5 ± 0·2 μM, which is significantly lower than the IC 50 of benznidazole. The compound also lysed the highly infectious bloodstream trypomastigotes (BST) with LC 50 values of 0·8 ± 0·3 μM at 4°C and 2·5 ± 1·1 μM at 37°C. KH-TFMDI inhibited cytokinesis and induced several morphological changes in the parasite, leading to its death by apoptosis and autophagy. This study highlights sirtuins as a potential new target for Chagas disease therapy.
Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease
PLoS neglected tropical diseases, 2018
Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnap...
International Journal of Molecular Sciences, 2020
Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi, affecting more than 7 million people in the world. Benznidazole and nifurtimox are the only drugs available for treatment and in addition to causing several side effects, are only satisfactory in the acute phase of the disease. Sirtuins are NAD+-dependent deacetylases involved in several biological processes, which have become drug target candidates in various disease settings. T. cruzi presents two sirtuins, one cytosolic (TcSir2rp1) and the latter mitochondrial (TcSir2rp3). Here, we characterized the effects of human sirtuin inhibitors against T. cruzi sirtuins as an initial approach to develop specific parasite inhibitors. We found that, of 33 compounds tested, two inhibited TcSir2rp1 (15 and 17), while other five inhibited TcSir2rp3 (8, 12, 13, 30, and 32), indicating that specific inhibitors can be devised for each one of the enzymes. Furthermore, all inhibiting compounds prevented parasite prolife...
PLoS neglected tropical diseases, 2015
Trypanosoma cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies are inadequate because of their severe host toxicity and numerous side effects. The identification of new biotargets is essential for the development of more efficient therapeutic alternatives. Inhibition of sirtuins from Trypanosoma brucei and Leishmania ssp. showed promising results, indicating that these enzymes may be considered as targets for drug discovery in parasite infection. Here, we report the first characterization of the two sirtuins present in T. cruzi. Dm28c epimastigotes that inducibly overexpress TcSIR2RP1 and TcSIR2RP3 were constructed and used to determine their localizations and functions. These transfected lines were tested regarding their acetylation levels, proliferation and metacyclogenesis rate, viability when treated with sirtuin inhibitors and in vitro infectivity. TcSIR2RP1 and TcSIR2RP3 are cytosolic and mitochondrial proteins respectively. Our data suggest that s...
Pharmaceuticals
Trypanosoma cruzi, the etiological agent of Chagas disease, relies on finely coordinated epigenetic regulation during the transition between hosts. Herein we targeted the silent information regulator 2 (Sir2) enzyme, a NAD+-dependent class III histone deacetylase, to interfere with the parasites’ cell cycle. A combination of molecular modelling with on-target experimental validation was used to discover new inhibitors from commercially available compound libraries. We selected six inhibitors from the virtual screening, which were validated on the recombinant Sir2 enzyme. The most potent inhibitor (CDMS-01, IC50 = 40 μM) was chosen as a potential lead compound.
Anti-Trypanosoma cruzi activity of nicotinamide
Acta Tropica, 2012
Inhibition of Trypanosoma brucei and Leishmania spp. sirtuins has shown promising antiparasitic activity, indicating that these enzymes may be used as targets for drug discovery against trypanosomatid infections. In the present work we carried out a virtual screening focused on the C pocket of Sir2 from Trypanosoma cruzi. Using this approach, the best ligand found was nicotinamide. In vitro tests confirmed the anti-T. cruzi activity of nicotinamide on epimastigote and trypomastigote forms. Moreover, treatment of T. cruzi-infected macrophages with nicotinamide caused a significant reduction in the number of amastigotes. In addition, alterations in the mitochondria and an increase in the vacuolization in the cytoplasm were observed in epimastigotes treated with nicotinamide. Analysis of the complex of Sir2 and nicotinamide revealed the details of the possible ligand-target interaction. Our data reveal a potential use of TcSir2 as a target for anti-T. cruzi drug discovery.
Parasitology Research, 2018
One of the main problems of Chagas disease (CD), the parasitic infection caused by Trypanosoma cruzi, is the lack of a completely satisfactory treatment, which is currently based on two old nitroheterocyclic drugs (i.e., nifurtimox and benznidazole) that show important limitations for treating patients. In this context, many laboratories look for alternative therapies potentially applicable to the treatment, and therefore, research in CD chemotherapy works in the design of experimental protocols for detecting molecules with activity against T. cruzi. Phenotypic assays are considered the most valuable strategy for screening these antiparasitic compounds. Among them, in vitro experiments are the first step to test potential anti-T. cruzi drugs directly on the different parasite forms (i.e., epimastigotes, trypomastigotes, and amastigotes) and to detect cytotoxicity. Once the putative trypanocidal drug has been identified in vitro, it must be moved to in vivo models of T. cruzi infection, to explore (i) acute toxicity, (ii) efficacy during the acute infection, and (iii) efficacy in the chronic disease. Moreover, in silico approaches for predicting activity have emerged as a supporting tool for drug screening procedures. Accordingly, this work reviews those in vitro, in vivo, and in silico methods that have been routinely applied during the last decades, aiming to discover trypanocidal compounds that contribute to developing more effective CD treatments.
Parasitology Research, 2020
Chagas disease (CD) is endemic in Latin America. Drugs available for its treatment are benznidazole (BZ)/nifurtimox (NF), both with low efficacy in the late infection and responsible for several side effects. Studies of new drugs for CD among natural products, and using drug combinations with BZ/NF are recommended. Silibinin (SLB) is a natural compound that inhibits the efflux pump (Pgp) of drugs in host cell membranes, causes death of trypanosomatids, has anti-inflammatory activity, and was never assayed against T. cruzi. Here, in vitro and in vivo activities of SLB, SLB+BZ, and BZ against T. cruzi Y strain were evaluated. Cytotoxicity of SLB in VERO cells by the MTT method revealed IC50 of 250.22 μM. The trypanocidal activity evaluated by resazurin method in epimastigotes showed that SLB 25 μM inhibited parasite growth. SLB IC50 and selectivity index (SI) for amastigote were 79.81 μM and 3.13, respectively. SLB100+BZ10 showed higher parasite inhibition (91.44%) than SLB or BZ. Swiss mice infected with Y strain were treated with SLB, SLB+BZ, and BZ. Parasitemia was evaluated daily and 90, 180, and 240 days after treatment in surviving animals by hemoculture, blood qPCR, and after euthanasia, by qPCR in heart tissue. SLB monotherapy was not able to control the parasitemia/mortality of the animals. Parasitological negativation of 85.7-100% was observed in the experimental groups treated with SLB+BZ. Although SLB had shown activity against T. cruzi in vitro, it was not active in mice. Thus, the results of the therapeutic effect observed with SLB+BZ may be interpreted as a result from BZ action.
Experimental Parasitology, 2009
Biochemical and structural modifications were investigated in axenic cultured Trypanosoma cruzi after treatment with gangliosides. Fluorescence anisotropy showed dose dependent increments in parasite membranes of ganglioside treated epimastigotes. NADP-GDH activity increased in parasites treated at day 4 (13%), 7 (137.2%), and 14 (28.50%) while NAD-MDH but decreased from day 7 to 21 (À5.74%, À32.22%, À27.92%). Treated parasites presented electron-lucent vacuoles opposite to the cytostoma, multilamellar bodies and dilated mitochondrion cristae, disorganized kinetoplast and altered heterochromatin structure. Gangliosides inhibited fusogenic ability (80%) and PLA2 activity (>75%) from the parasite. The same occurred with anti-PLA2 antibodies. Trypomastigotes suffered loss of cytoplasmic material and organelles when GM1 was present in culture medium. We propose that exogenous gangliosides produced: altered lipid order, inhibited membrane enzymes, the parasite energy source shifted from glucose to amino acids, ending on a structural transformation which signals parasite cell death.