Better understanding of hydrologic process through data-driven learning facilitated by collaborative open web-based platforms (original) (raw)

The era of ”big data” promises to provide new hydrologic insights, and open web-based platforms are being developed and adopted by the hydrologic science community to harness these datasets and data services. This shift accompanies advances in hydrology education and the growth of web-based hydrology learning modules, but their capacity to utilize emerging open platforms and data services to enhance student learning through data-driven activities remains largely untapped. Given that generic equations may not easily translate into local or regional solutions, teaching students to explore how well models or equations work in particular settings or to answer specific problems using real data is essential. This paper introduces an open web-based learning module developed to advance data-driven hydrologic process learning, targeting upper level undergraduate and early graduate students in hydrology and engineering. The module was developed and deployed on the HydroLearn open educational ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.