Trait-Environment Relationships Reveal the Success of Alien Plants Invasiveness in an Urbanized Landscape (original) (raw)
Related papers
Diversity and Distributions, 2010
Aim Understanding the processes that drive invasion success of alien species has received considerable attention in current ecological research. From an evolutionary point of view, many studies have shown that the phylogenetic similarity between the invader species and the members of the native community may be an important aspect of invasiveness. In this study, using a coarse-scale systematic sampling grid of 1 km2, we explore whether the occupancy frequency of two groups of alien species, archaeophytes and neophytes, in the urban angiosperm flora of Brussels is influenced by their phylogenetic relatedness to native species.Location The city of Brussels (Belgium).Methods We used ordinary least-squares regressions and quantile regressions for analysing the relationship between the occupancy frequency of alien species in the sampled grid and their phylogenetic distance to the native species pool.Results Alien species with high occupancy frequency in the sampled grid are, on average, more phylogenetically related to native species than are less frequent aliens, although this relationship is significant only for archaeophytes. In addition, as shown by the quantile regressions, the relationship between phylogenetic relatedness to the native flora and occupancy frequency is much stronger for the most frequent aliens than for rare aliens.Main conclusions Our data suggest that it is unlikely that species with very low phylogenetic relatedness to natives will become successful invaders with very high distribution in the area studied. To the contrary, under future climate warming scenarios, present-day urban aliens of high occupancy frequency are likely to become successful invaders even outside urban areas.
Diversity and Distributions, 2010
Aim Understanding the processes that drive invasion success of alien species has received considerable attention in current ecological research. From an evolutionary point of view, many studies have shown that the phylogenetic similarity between the invader species and the members of the native community may be an important aspect of invasiveness. In this study, using a coarse-scale systematic sampling grid of 1 km 2 , we explore whether the occupancy frequency of two groups of alien species, archaeophytes and neophytes, in the urban angiosperm flora of Brussels is influenced by their phylogenetic relatedness to native species. Location The city of Brussels (Belgium). Methods We used ordinary least-squares regressions and quantile regressions for analysing the relationship between the occupancy frequency of alien species in the sampled grid and their phylogenetic distance to the native species pool. Results Alien species with high occupancy frequency in the sampled grid are, on average, more phylogenetically related to native species than are less frequent aliens, although this relationship is significant only for archaeophytes. In addition, as shown by the quantile regressions, the relationship between phylogenetic relatedness to the native flora and occupancy frequency is much stronger for the most frequent aliens than for rare aliens. Main conclusions Our data suggest that it is unlikely that species with very low phylogenetic relatedness to natives will become successful invaders with very high distribution in the area studied. To the contrary, under future climate warming scenarios, present-day urban aliens of high occupancy frequency are likely to become successful invaders even outside urban areas.
Invasive Plant Species Distribution Is Structured by Soil and Habitat Type in the City Landscape
Plants
Invasive alien species (IAS) is a global problem that largely relates to human activities and human settlements. To prevent the further spread of IAS, we first need to know their pattern of distribution, to determine which constitutes the greatest threat, and understand which habitats and migration pathways they prefer. Our research aimed to identify the main vectors and distribution pattern of IAS of plants in the city environment. We checked the relations between species distribution and such environmental factors as urban soil type and habitat type. We applied data on IAS occurrence (collected in the period 1973–2015) in 515 permanent plots with dimensions of 0.5 × 0.5 km and analyzed by direct ordination methods. In total, we recorded 66 IAS. We found a 27% variance in the IAS distribution pattern, which can be explained by statistically significant soil and habitat types. The most important for species distribution were: river and alluvial soils, forests and related rusty soils...
Alien plant species do have a clear preference for different land uses within urban environments
Urban Ecosystems
Since neophytes can become invasive in the future, untangling their ecological preferences is of paramount importance, especially in urban areas where they represent a substantial proportion of the local flora. Studies exploring alien species assemblages in urban environments are however scarce. This study aims to unravel alien plant species preferences for five urban land uses (densely built-up areas, open built-up areas, industrial areas, broadleaved urban forests, and agricultural areas and small landscape elements). We took the city of Brussels as a model, in which we recorded all vascular species growing spontaneously in grid cells of 1 km 2. We tested two different ways of classifying the 1-km 2 cells: (1) We simply associated each cell with its dominant land cover; (2) We used a fuzzy approach for which the degree of association of a given cell to a given land cover depended on the proportion of that land cover within the cell. For both classification methods, we calculated the indicator species of the resulting land cover types based on alien species only. The crisp and fuzzy classifications identified 33 and 49 species, respectively, with a clear preference for some urban land use types (from a total of 129 alien plant species analyzed). Results showed that urban land use types having apparently similar environmental conditions can actually harbor different neophyte assemblages. Fine-tuning the categorization of urban environments in future ecological studies is therefore important for understanding spatial patterns of alien species occurrence.
Understanding plant invasions : a global scale meta-analysis
Ordonez A. (2011) Understanding plant invasions: A global scale meta-analysis. PhD Thesis, Rijksuniversiteit Groningen. Community and Conservation Ecology Group. Nijenborgh 7-9747AG Groningen. A.Ordonez.Gloria@rug.nl The globalisation of human activities has resulted in the intentional and unintentional movement of species to areas beyond their natural range; ultimately causing biotic homogenisation and irreversible changes to ecosystems. This dissertation addresses the invasiveness and invasibility question by exploring global patters of trait similarity between co-occurring alien and native plants. To do this, two questions were asked: Can trait similarity between aliens and natives explain aliens success?; and, are the observed similarity patterns a product of evolution?. Aliens were found to display higher leaf traits, lower canopy height and smaller seeds. The magnitude of trait differences between co-occurring aliens and natives remained the same along climatic edaphic and human disturbance gradients. These differences showed a strong dependence to the phylogenetic relation between aliens and the native community; with phylogenetically close co-occurring alien and native plants being more phenotypically similar than expected by chance. These differences in traits were the result of aliens conserving their traits once introduced to a new area; something we suggest emerges from core ecological, evolutionary physiological and genetic constraints. The work presented here is a contribution to the long lasting quest for understanding the causes and mechanisms behind the success of invasive species. Lastly, It is shown how species, community and evolutionary patterns must be accounted together to determine invasion risk.
Urban sprawl facilitates invasions of exotic plants across multiple spatial scales
Biological Invasions, 2022
Exotic plant invasions are considered one of the major threats to biodiversity causing important impacts at the population, community, and ecosystem levels. Understanding the drivers of plant invasions across multiple spatial and temporal scales often requires a landscape approach. The effect of landscape composition on biological invasion has been extensively studied, whereas landscape configuration effects were seldom considered or the analyses were limited to single species. Here, we aimed to analyze how the expansion of urban and agricultural areas can affect exotic species richness (both neophytes and archaeophytes) at three spatial scales, namely regional (scale: 37.5 km2), landscape (scale: 7.1 km2) and local (scale: 100 m2). We considered the possible contribution of urban and agricultural areas both in terms of composition (i.e. habitat cover) and configuration (i.e. shape complexity of patches). First, we found that increasing urbanization coupled with high shape complexity of urban elements were major drivers of both neophyte and archaeophyte invasions across heterogeneous landscapes. In particular, shape complexity seemed to be a key driver of plant invasions at large spatial scale, whereas the type of recipient habitat and urban cover determined the exotic success at the patch level. Second, archaeophytes were also affected by agriculture land use, i.e. agricultural patches shape complexity increased their spread at both regional and landscape scales. High shape complexity of highly disturbed habitats is expected to increase the exchange surface that exotic plant use to spread their propagules across the landscape mosaics. Our findings suggest that urban planning aimed at curbing urban fragmentation by both reducing shape complexity and diffuse urban sprawl might greatly improve the resistance of landscapes to biological invasions.
Functional Ecology, 2011
1. Plastic responses to spatiotemporal environmental variation strongly influence species distribution, with widespread species expected to have high phenotypic plasticity. Theoretically, high phenotypic plasticity has been linked to plant invasiveness because it facilitates colonization and rapid spreading over large and environmentally heterogeneous new areas. 2. To determine the importance of phenotypic plasticity for plant invasiveness, we compare well-known exotic invasive species with widespread native congeners. First, we characterized the phenotype of 20 invasive-native ecologically and phylogenetically related pairs from the Mediterranean region by measuring 20 different traits involved in resource acquisition, plant competition ability and stress tolerance. Second, we estimated their plasticity across nutrient and light gradients. 3. On average, invasive species had greater capacity for carbon gain and enhanced performance over a range of limiting to saturating resource availabilities than natives. However, both groups responded to environmental variations with high albeit similar levels of trait plasticity. Therefore, contrary to the theory, the extent of phenotypic plasticity was not significantly higher for invasive plants. 4. We argue that the combination of studying mean values of a trait with its plasticity can render insightful conclusions on functional comparisons of species such as those exploring the performance of species coexisting in heterogeneous and changing environments.
Geographical Constraints Are Stronger than Invasion Patterns for European Urban Floras
Understanding the mechanisms that affect invasion success of alien species is an important prerequisite for the effective management of present and future aliens. To gain insight into this matter we asked the following questions: Are the geographical patterns of species distributions in urban floras different for native compared with alien plant species? Does the introduction of alien species contribute to the homogenization of urban floras? We used a Mantel test on Jaccard dissimilarity matrices of 30 urban floras across the British Isles, Italy and central Europe to compare the spatial distribution of native species with four classes of alien species: archaeophytes, all neophytes, non-invasive neophytes, and invasive neophytes. Archaeophytes and neophytes are species that were introduced into Europe before and after 1500 AD, respectively. To analyze the homogenizing effect of alien species on the native urban floras, we tested for differences in the average dissimilarity of individual cities from their group centroid in ordination space. Our results show that the compositional patterns of native and alien species seem to respond to the same environmental drivers, such that all four classes of alien species were significantly related to native species across urban floras. In this framework, alien species may have an impact on biogeographic patterns of urban floras in ways that reflect their history of introduction and expansion: archaeophytes and invasive neophytes tended to homogenize, while non-invasive neophytes tended to differentiate urban floras.