Manufacturing experience and commissioning of large size (volume >180 m3) UHV class vacuum vessel for Indian test facility (INTF) for neutral beam (original) (raw)
Related papers
ITER vacuum vessel design and construction
Fusion Engineering and …, 2010
According to recent design review results, the original reference vacuum vessel (VV) design was selected with a number of modifications including 3D shaping of the outboard inner shell. The VV load conditions were updated based on reviews of the plasma disruption and vertical displacement event (VDE) database. The lower port gussets have been reinforced based on structural analysis results, including non-linear buckling. Design of in-vessel coils for the mitigation of edge localized modes (ELM) and plasma vertical stabilization (VS) has progressed. Design of the in-wall-shielding (IWS) has progressed in details. The detailed layout of ferritic steel plates and borated steel plates is optimized based on the toroidal field ripple analysis. The procurement arrangements (PAs) for the VV including ports and IWS have been prepared or signed. Final design reviews were carried out to check readiness for the PA signature. The procedure for licensing the ITER VV according to the French Order on Nuclear Pressure Equipment (ESPN) has started and conformity assessment is being performed by an Agreed Notified Body (ANB). A VV design description document, VV load specification document, hazard and stress analysis reports and particular material appraisal were submitted according to the guideline and RCC-MR requirements.
Design finalization and start of construction of ITER vacuum vessel
Fusion Engineering and Design, 2011
The vacuum vessel (VV) design is being finalized including interface components, such as the support rails and feedthroughs of coils for mitigation of edge localized modes (ELM) and vertical stabilization (VS) of the plasma (ELM/VS coils). It was necessary to make adjustments in the locations of the blanket supports and manifolds to accommodate the design modifications in the ELM/VS coils. The lower port gussets were reinforced to keep a sufficient margin under the increased VV load conditions. The VV support design is being finalized as well, with an emphasis on structure simplification. The design of the inwall shielding (IWS) has progressed, considering assembly and required tolerances. The layout of ferritic steel plates and borated steel plates will be optimized based on on-going toroidal field ripple analysis. The VV instrumentation was defined in detail. Strain gauges, thermocouples, displacement meters and accelerometers shall be installed to monitor the status of the VV in normal and off-normal conditions to confirm all safety functions are performed correctly. The ITER VV design was preliminarily approved, and the VV materials including 316L(N) IG were already qualified by the Agreed Notified Body (ANB) according to the procedure of Nuclear Pressure Equipment Order.
Manufacturing preparations for the European Vacuum Vessel Sector for ITER
Fusion Engineering and Design, 2012
The contract for the seven European Sectors of the ITER Vacuum Vessel, which has very tight tolerances and high density of welding, was placed at the end of 2010 with AMW, a consortium of three companies. The start-up of the engineering, including R&D, design and analysis activities of this large and complex contract, one of the largest placed by F4E, the European Domestic Agency for ITER, is described. The statutory and regulatory requirements of ITER Organization and the French Nuclear Safety regulations have made the design development subject to rigorous controls. AMW was able to make use of the previous extensive R&D and prototype work carried out during the past 9 years, especially in relation to advanced welding and inspection techniques. The paper describes the manufacturing methodology with the focus on controlling distortion with predictions by analysis, avoiding use of welded-on jigs, and making use of low heat input narrow-gap welding with electron beam welding as far as possible and narrow-gap TIG when not. Further R&D and more than ten significant mock-ups are described. All these preparations will help to assure the successful manufacture of this critical path item of ITER.
Nuclear Fusion, 2003
During the preparation of the procurement specifications for long lead-time items, several detailed vacuum vessel (VV) design improvements are being pursued, such as elimination of the inboard triangular support, adding a separate interspace between inner and outer shells for independent leak detection of field joints, and revising the VV support system to gain a more comfortable structural performance margin. Improvements to the blanket design are also under investigation, an inter-modular key instead of two prismatic keys and a co-axial inletoutlet cooling connection instead of two parallel pipes. One of the most important achievements in the VV R&D has been demonstration of the necessary assembly tolerances. Further development of cutting, welding and nondestructive tests (NDT) for the VV has been continued, and thermal and hydraulic tests have been performed to simulate the VV cooling conditions. In FW/blanket and divertor, full-scale prototypical mock-ups of the FW panel, the blanket shield block, and the divertor components, have been successfully fabricated. These results make us confident in the validity of our design and give us possibilities of alternate fabrication methods.
Design progress of the vacuum vessel sectors and ports towards the ITER construction
Fusion Engineering and Design, 2008
Recent progress of the ITER vacuum vessel (VV) design is presented. As the ITER construction phase approaches, the VV design has been improved and developed in more detail with the focus on better performance, improved manufacture and reduced cost. Based on the achievements of manufacturing studies being performed in cooperation with the ITER participant teams (PTs), design improvement of the typical VV sector (#1, see the legend to figure 1 in this article) has been nearly finalized. Design improvement of other sectors is in progress-in particular, of the VV sectors #2 and #3 which interface with tangential ports for the neutral beam (NB) injection. For all sectors, the concept for the in-wall shielding has progressed and developed in more detail. The design progress of the VV sectors has been accompanied by the progress of the port structures. Structural analyses have been performed to validate all design improvements.
Design progress of the ITER vacuum vessel sectors and port structures
Fusion Engineering and Design, 2007
Recent progress of the ITER vacuum vessel (VV) design is presented. As the ITER construction phase approaches, the VV design has been improved and developed in more detail with the focus on better performance, improved manufacture and reduced cost. Based on achievements of manufacturing studies, design improvement of the typical VV Sector (#1) has been nearly finalized. Design improvement of other sectors is in progress-in particular, of the VV Sectors #2 and #3 which interface with tangential ports for the neutral beam (NB) injection. For all sectors, the concept for the in-wall shielding has progressed and developed in more detail. The design progress of the VV sectors has been accompanied by the progress of the port structures. In particular, design of the NB ports was advanced with the focus on the beam-facing components to handle the heat input of the neutral beams. Structural analyses have been performed to validate all design improvements.
Thermo-hydraulic design verification of the neutral beam liner for the ITER vacuum vessel
Fusion Engineering and Design, 2011
The ITER vacuum vessel has upper, equatorial and lower port structures used for equipment installation, utility feedthroughs, vacuum pumping and access inside the vessel for maintenance. A neutral beam (NB) port of equatorial ports provides a path of neutral beam for plasma heating and current drive. An internal duct liner is built in the NB ports, and copper alloy panels are placed in the top and bottom of the liner to protect duct surface from high-power heat loads. Global NB liner models for the upper panel and the lower panel have been developed, and flow field and conjugate heat transfer analyses have been performed to find out pressure drop and heat transfer characteristics of the liner. Heat loads such as NB power, volumetric heating and surface heat flux are applied in the analyses for beam steering and misalignment conditions. For the upper panel, it is found that unbalanced flow distribution occurs in each flow path, and this causes poor heat transfer performance as well. In order to improve flow distribution and to reduce pressure losses, hydraulic analyses for modified cooling path schemes have been carried out, and design recommendations are made based on the analysis results. For the lower panel, local flow distributions and pressure drop values at each header and branch of the tube are obtained by applying design coolant flow rate. Together with the coolant flow field, temperature and heat transfer coefficient distributions are also acquired from the analyses. Based on the analysis results, it is concluded that the lower panel for the NB liner is relatively well designed even though the given heat loads are very severe.
Results from ITER vacuum vessel sector manufacturing development in Europe
Fusion Engineering and Design, 2007
This paper describes the results from several R&D tasks carried out in Europe to improve the prospects for manufacturing the ITER vacuum vessel within the required tight tolerances and to the required high quality. The experience from the manufacture of a part of the sector has highlighted several distortion issues, which can be compensated for. A local machining tool demonstrated the possibility of vibration-free machining without lubrication, as required in the ITER clean conditions scenario. Although a project to establish the feasibility of cold 3-D forming of the walls showed it was with the capacity of available equipment, a problem of buckling instability may make this method unusable. An alternative method of sector manufacture, using e-beam welding, and avoiding the use of one-sided welds, is described.
Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance
Fusion Engineering and Design, 2000
ITER requires a 316 l stainless steel, double-skinned vacuum vessel (VV), each shell being 60 mm thick. EFDA (European Fusion Development Agreement) is investigating methods to be used for performing welding and NDT during VV assembly and also cutting and re-welding for remote sector replacement, including the development of an Intersector Welding Robot (IWR) [Jones et al. This conference]. To reduce the welding time, distortions and residual stresses of conventional welding, previous work concentrated on CO 2 laser welding and cutting processes [Jones et al. Proc. Symp. Fusion Technol., Marseilles, 1998]. NdYAG laser now provides the focus for welding of the rearside root and for completing the weld for overhead positions with multipass filling. Electron beam (E-beam) welding with local vacuum offers a single-pass for most of the weld depth except for overhead positions. Plasma cutting has shown the capability to contain the backside dross and preliminary work with NdYAG laser cutting has shown good results. Automated ultrasonic inspection of assembly welds will be improved by the use of a phased array probe system that can focus the beam for accurate flaw location and sizing. This paper describes the recent results of process investigations in this R&D programme, involving five European sites and forming part of the overall VV/blanket research effort [W. Dänner et al. This conference].