Emergent patterns of population genetic structure for a coral reef community (original) (raw)

Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish

Marine Biology, 2007

Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.

Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species

Molecular …, 2010

Marine species frequently show weak and/or complex genetic structuring that is commonly dismissed as “chaotic” genetic patchiness and ecologically uninformative. Here, using three datasets that individually feature weak chaotic patchiness, we demonstrate that combining inferences across species and incorporating environmental data can greatly improve the predictive value of marine population genetics studies on small spatial scales. Significant correlations in genetic patterns of microsatellite markers among three species, kelp bass Paralabrax clathratus, Kellet’s whelk Kelletia kelletii and California spiny lobster Panulirus interruptus, in the Southern California Bight suggest that slight differences in diversity and pairwise differentiation across sampling sites are not simply noise or chaotic patchiness, but are ecologically meaningful. The interspecies correlations potentially result from shared environmental drivers of genetic patterns, and we assembled data on kelp bed size, sea surface temperature and estimates of site-to-site migration probability derived from a high resolution multi-year ocean circulation model to test this hypothesis. These data served as predictor variables in linear models of genetic diversity and linear mixed models of genetic differentiation that were assessed with information-theoretic model selection. Kelp was the most informative predictor of genetics for all three species, but ocean circulation also played a minor role for kelp bass. The shared patterns suggest a single spatial marine management strategy may effectively protect genetic diversity of multiple species. This study demonstrates the power of environmental and ecological data to shed light on weak genetic patterns and highlights the need for future focus on a mechanistic understanding of the links between oceanographic and ecological processes and genetic structure.

Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific

Molecular ecology, 2005

Dispersal may be a critical factor in the ability of reef-building corals to recover after major disturbances. We studied patterns of geographical structure using four microsatellite markers in seven South Pacific populations of Pocillopora meandrina, a major coral species from Polynesia. Variation within populations showed evidence of heterozygote deficiency. Genetic differentiation between populations was detected at a large scale (2000 km) between the Tonga and the Society Islands. Within the Society Islands, four of the five studied populations from Bora Bora, Moorea and Tahiti were not significantly different from each other. Unexpectedly, one of the three populations surveyed in Moorea was genetically different from the other two populations of this island (that were 5 and 10 km apart), and from the populations of the other two surveyed islands in this archipelago. We cannot rule out the possibility that this pattern is an equilibrium state, whereby short-range dispersal is lo...

Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis

Molecular ecology, 2013

Patterns of isolation by distance are uncommon in coral populations. Here, we depart from historical trends of large-scale, geographical genetic analyses by scaling down to a single patch reef in Kāne'ohe Bay, Hawai'i, USA, and map and genotype all colonies of the coral, Pocillopora damicornis. Six polymorphic microsatellite loci were used to assess population genetic and clonal structure and to calculate individual colony pairwise relatedness values. Our results point to an inbred, highly clonal reef (between 53 and 116 clonal lineages of 2352 genotyped colonies) with a much skewed genet frequency distribution (over 70% of the reef was composed of just seven genotypes). Spatial autocorrelation analyses revealed that corals found close together on the reef were more genetically related than corals further apart. Spatial genetic structure disappears, however, as spatial scale increases and then becomes negative at the largest distances. Stratified, random sampling of three ne...

Subtle genetic structure reveals restricted connectivity among populations of a coral reef fish inhabiting remote atolls

We utilized a spatial and temporal analyses of genetic structure, supplemented with ecological and oceanographic analysis, to assess patterns of population connectivity in a coral reef fish Chromis margaritifer among the unique and remote atolls in the eastern Indian Ocean. A subtle, but significant genetic discontinuity at 10 microsatellite DNA loci was detected between atoll systems corresponding with a low (≤ 1%) probability of advection across the hundreds of kilometers of open ocean that separates them. Thus, although genetic connections between systems are likely maintained by occasional long-distance dispersal of C. margaritifer larvae, ecological population connectivity at this spatial scale appears to be restricted. Further, within one of these atoll systems, significant spatial differentiation among samples was accompanied by a lack of temporal pairwise differentiation between recruit and adult samples, indicating that restrictions to connectivity also occur at a local scale (tens of kilometers). In contrast, a signal of panmixia was detected at the other atoll system studied. Lastly, greater relatedness and reduced genetic diversity within recruit samples was associated with relatively large differences among them, indicating the presence of sweepstakes reproduction whereby a small proportion of adults contributes to recruitment in the next generation. These results are congruent with earlier work on hard corals, suggesting that local production of larvae drives population replenishment in these atoll systems for a range of coral reef species.

Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species: SEASCAPE GENETICS

Molecular Ecology, 2010

Marine species frequently show weak and/or complex genetic structuring that is commonly dismissed as ‘chaotic’ genetic patchiness and ecologically uninformative. Here, using three datasets that individually feature weak chaotic patchiness, we demonstrate that combining inferences across species and incorporating environmental data can greatly improve the predictive value of marine population genetics studies on small spatial scales. Significant correlations in genetic patterns of microsatellite markers among three species, kelp bass Paralabrax clathratus, Kellet’s whelk Kelletia kelletii and California spiny lobster Panulirus interruptus, in the Southern California Bight suggest that slight differences in diversity and pairwise differentiation across sampling sites are not simply noise or chaotic patchiness, but are ecologically meaningful. To test whether interspecies correlations potentially result from shared environmental drivers of genetic patterns, we assembled data on kelp bed size, sea surface temperature and estimates of site-to-site migration probability derived from a high resolution multi-year ocean circulation model. These data served as predictor variables in linear models of genetic diversity and linear mixed models of genetic differentiation that were assessed with information–theoretic model selection. Kelp was the most informative predictor of genetics for all three species, but ocean circulation also played a minor role for kelp bass. The shared patterns suggest a single spatial marine management strategy may effectively protect genetic diversity of multiple species. This study demonstrates the power of environmental and ecological data to shed light on weak genetic patterns and highlights the need for future focus on a mechanistic understanding of the links between oceanography, ecology and genetic structure.