Effective perfect fluids in cosmology (original) (raw)
Abstract
We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.
Figures (1)
Figure 1: The map between ® and x coordinates is depicted. At any given (conformal) time 7 , a fluid element labelled by ® occupies a position given by x(7,®). If the inverse function is considered, any spacetime point (7,2) is mapped to a fluid element ®. In this picture, the ® coordinates are scalar fields of spacetime. the diagonal combination of internal (acting on ®) and space (acting on x) symmetries is left unbroken [31]. These diagonal symmetries ensure that the perturbations (or in other words, the excitations of the fluid) 7* = ®* — x propagate in a homogeneous and isotropic background. In addition, we demand invariance under volume preserving spatial diffeomorphisms
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (69)
- S. Weinberg, "Effective Field Theory for Inflation," Phys. Rev. D 77, 123541 (2008) hep-th/0804.4291.
- C. P. Burgess, H. M. Lee and M. Trott, "Power-counting and the Validity of the Classical Approximation During Inflation," JHEP 0909, 103 (2009) hep-ph/0902.4465.
- J. L. F. Barbon and J. R. Espinosa, "On the Naturalness of Higgs Inflation," Phys. Rev. D 79, 081302 (2009) hep-ph/0903.0355.
- M. Park, K. M. Zurek and S. Watson, "A Unified Approach to Cosmic Acceleration," Phys. Rev. D 81, 124008 (2010) hep-th/1003.1722.
- J. K. Bloomfield and E. E. Flanagan, "A Class of Effective Field Theory Models of Cosmic Acceleration," gr-qc/1112.0303.
- C. P. Burgess, M. W. Horbatsch and S. P. Patil, "Inflating in a Trough: Single-Field Effective Theory from Multiple-Field Curved Valleys," hep-th/1209.5701.
- P. Creminelli, M. A. Luty, A. Nicolis and L. Senatore, "Starting the Universe: Stable Viola- tion of the Null Energy Condition and Non-standard Cosmologies," JHEP 0612, 080 (2006) hep-th/0606090.
- S. Matarrese and M. Pietroni, "Resumming Cosmic Perturbations," JCAP 0706, 026 (2007) astro-ph/0703563.
- C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, "The Effective Field Theory of Inflation," JHEP 0803, 014 (2008) hep-th/0709.0293.
- C. Cheung, A. L. Fitzpatrick, J. Kaplan and L. Senatore, "On the consistency relation of the 3-point function in single field inflation," JCAP 0802, 021 (2008) hep-th/0709.0295.
- P. Creminelli, G. D'Amico, J. Norena and F. Vernizzi, "The Effective Theory of Quintessence: the w < -1 Side Unveiled," JCAP 0902, 018 (2009) astro-ph/0811.0827.
- L. Senatore and M. Zaldarriaga, "On Loops in Inflation," JHEP 1012, 008 (2010) hep-th/0912.2734.
- N. Bartolo, M. Fasiello, S. Matarrese and A. Riotto, "Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum," JCAP 1008, 008 (2010) astro-ph.CO/1004.0893.
- D. Baumann, A. Nicolis, L. Senatore, and M. Zaldarriaga, "Cosmological non-linearities as an effective fluid," 04 2010, astro-ph.CO/1004.2488.
- N. Bartolo, M. Fasiello, S. Matarrese and A. Riotto, "Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Trispectrum," JCAP 1009, 035 (2010) astro-ph.CO/1006.5411.
- L. Senatore and M. Zaldarriaga, "The Effective Field Theory of Multifield Inflation," JHEP 1204, 024 (2012) hep-th/1009.2093.
- N. Bartolo, M. Fasiello, S. Matarrese and A. Riotto, "Tilt and Running of Cos- mological Observables in Generalized Single-Field Inflation," JCAP 1012, 026 (2010) astro-ph.CO/1010.3993.
- P. Creminelli, G. D'Amico, M. Musso, J. Norena and E. Trincherini, "Galilean symmetry in the effective theory of inflation: new shapes of non-Gaussianity," JCAP 1102, 006 (2011) hep-th/1011.3004.
- P. Creminelli, G. D'Amico, M. Musso and J. Norena, "The (not so) squeezed limit of the primordial 3-point function," JCAP 1111, 038 (2011) astro-ph.CO/1106.1462.
- M. Pietroni, G. Mangano, N. Saviano and M. Viel, "Coarse-Grained Cosmological Perturba- tion Theory," JCAP 1201, 019 (2012) astro-ph.CO/1108.5203.
- D. Lopez Nacir, R. A. Porto, L. Senatore and M. Zaldarriaga, "Dissipative effects in the Effective Field Theory of Inflation," JHEP 1201, 075 (2012) hep-th/1109.4192.
- L. Senatore, M. Zaldarriaga and M. Zaldarriaga, "On Loops in Inflation II: IR Effects in Single Clock Inflation," hep-th/1203.6354.
- G. L. Pimentel, L. Senatore and M. Zaldarriaga, "On Loops in Inflation III: Time Indepen- dence of zeta in Single Clock Inflation," JHEP 1207, 166 (2012) hep-th/1203.6651.
- L. Senatore and M. Zaldarriaga, "A Note on the Consistency Condition of Primordial Fluc- tuations," JCAP 1208, 001 (2012) astro-ph.CO/1203.6884.
- A. Achucarro, V. Atal, S. Cespedes, J. -O. Gong, G. A. Palma and S. P. Patil, "Heavy fields, reduced speeds of sound and decoupling during inflation," hep-th/1205.0710.
- J. J. M. Carrasco, M. P. Hertzberg and L. Senatore, JHEP 1209, 082 (2012) astro-ph.CO/1206.2926.
- M. P. Hertzberg, "The Effective Field Theory of Dark Matter and Structure Formation: Semi-Analytical Results," astro-ph.CO/1208.0839.
- D. L. Nacir, R. A. Porto and M. Zaldarriaga, "The consistency condition for the three-point function in dissipative single-clock inflation," JCAP 1209, 004 (2012) hep-th/1206.7083.
- G. Gubitosi, F. Piazza and F. Vernizzi, "The Effective Field Theory of Dark Energy," hep-th/1210.0201.
- R. Gwyn, G. A. Palma, M. Sakellariadou and S. Sypsas, "Effective field theory of weakly coupled inflationary models," hep-th/1210.3020.
- S. Dubovsky, T. Gregoire, A. Nicolis, and R. Rattazzi, "Null energy condition and superlu- minal propagation," JHEP, vol. 0603, p. 025, 2006, hep-th/0512260.
- S. Endlich, A. Nicolis, R. Rattazzi, and J. Wang, "The Quantum mechanics of perfect fluids," JHEP, vol. 1104, p. 102, 2011, hep-th/1011.6396.
- S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, "Effective field theory for hydrodynamics: thermodynamics, and the derivative expansion," 2011, hep-th/1107.0731.
- A. Nicolis, "Low-energy Effective Field Theory for Finite-Temperature Relativistic Superflu- ids," hep-th/1108.2513.
- A. Nicolis and D. T. Son, "Hall Viscosity from Effective Field Theory," hep-th/1103.2137.
- S. Dubovsky, L. Hui and A. Nicolis, "Effective Field Theory for Hydrodynamics: Wess- Zumino Term and Anomalies in Two Spacetime Dimensions," hep-th/1107.0732.
- G. Torrieri, "Viscosity of An Ideal Relativistic Quantum Fluid: A Perturbative study," Phys.Rev., vol. D85, p. 065006, 2012, hep-th/1112.4086.
- C. Hoyos, B. Keren-Zur and Y. Oz, JHEP 1211, 152 (2012) hep-ph/1206.2958.
- D. Blas, M. M. Ivanov and S. Sibiryakov, "Testing Lorentz invariance of dark matter," astro-ph.CO/1209.0464.
- H. Leutwyler, "Phonons as Goldstone Bosons," Helv. Phys. Acta 70 (1997) 275 hep-ph/9609466.
- N. Andersson and G. L. Comer, "Relativistic fluid dynamics: Physics for many different scales," Living Rev. Rel. 10, 1 (2005) gr-qc/0605010.
- J. D. Brown, "Action functionals for relativistic perfect fluids," Class.Quant.Grav., vol. 10, pp. 1579-1606, 1993, gr-qc/9304026.
- G. Comer and D. Langlois, "Hamiltonian formulation for multi-constituent relativistic perfect fluids," Class.Quant.Grav., vol. 10, p. 2317, 1993.
- G. Comer and D. Langlois, "Hamiltonian formulation for relativistic superfluids," Class.Quant.Grav., vol. 11, pp. 709-721, 1994.
- B. Carter, "Relativistic Fluid Dynamics," Berlin: Springer (1989) ed A. Anile and Y. Choquet-Bmhat. pp:1-64.
- R. L. Arnowitt, S. Deser and C. W. Misner, "The Dynamics of general relativity," gr-qc/0405109.
- A. H. Taub, "General Relativistic Variational Principle for Perfect Fluids," Phys. Rev. 94, 1468 (1954).
- B. Carter, "Elastic perturbation theory in general relativity and a variation principle for a rotating solid star," Comm. Math. Phys 30 4, 261-286 (1973).
- G. Shiu and J. Xu, "Effective Field Theory and Decoupling in Multi-field Inflation: An Illustrative Case Study," Phys. Rev. D 84, 103509 (2011) hep-th/1108.0981.
- S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York, NY: Wiley, 1972.
- S. Weinberg, Cosmology. Oxford: Oxford Univ. Press, 2008.
- V. F. Mukhanov, H. Feldman, and R. H. Brandenberger, "Theory of cosmological pertur- bations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions," Phys.Rept., vol. 215, pp. 203-333, 1992.
- F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, "Large scale structure of the universe and cosmological perturbation theory," Phys. Rept. 367 (2002) 1 astro-ph/0112551
- K. A. Malik and D. Wands, "Cosmological perturbations," Phys.Rept., vol. 475, pp. 1-51, 2009, astro-ph/0809.4944.
- C.-P. Ma and E. Bertschinger, "Cosmological perturbation theory in the synchronous and conformal Newtonian gauges," Astrophys.J., vol. 455, pp. 7-25, 1995, astro-ph/9506072.
- E. Bertschinger, "Cosmological dynamics," 1993, astro-ph/9503125.
- M. Bruni, S. Matarrese, S. Mollerach, and S. Sonego, "Perturbations of space-time: Gauge transformations and gauge invariance at second order and beyond," Class.Quant.Grav., vol. 14, pp. 2585-2606, 1997, gr-qc/9609040.
- J. M. Bardeen, "Gauge Invariant Cosmological Perturbations," Phys.Rev., vol. D22, pp. 1882- 1905, 1980.
- J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, "Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe," Phys.Rev., vol. D28, p. 679, 1983.
- H. Kodama and M. Sasaki, "Cosmological Perturbation Theory," Prog.Theor.Phys.Suppl., vol. 78, pp. 1-166, 1984.
- I. Sawicki, I. D. Saltas, L. Amendola and M. Kunz, "Consistent perturbations in an imperfect fluid," astro-ph.CO/1208.4855.
- G. Ballesteros and J. Lesgourgues, "Dark energy with non-adiabatic sound speed: initial conditions and detectability," JCAP 1010, 014 (2010) astro-ph.CO/1004.5509.
- P. A. R. Ade et al. [Planck Collaboration], "Planck Early Results. I. The Planck mission," Astron. Astrophys. 536, 16464 (2011) astro-ph.IM/1101.2022.
- R. Laureijs, J. Amiaux, S. Arduini, J. -L. Augueres, J. Brinchmann, R. Cole, M. Cropper and C. Dabin et al., "Euclid Definition Study Report," astro-ph.CO/1110.3193.
- W. Hu, "Structure formation with generalized dark matter," Astrophys. J. 506, 485 (1998) astro-ph/9801234.
- S. Endlich, A. Nicolis and J. Wang, "Solid inflation," hep-th/1210.0569.
- M. Bruni, P. K. Dunsby, and G. F. Ellis, "Cosmological perturbations and the physical meaning of gauge invariant variables," Astrophys.J., vol. 395, pp. 34-53, 1992.
- L. Landau, E. Lifshitz, J. Sykes, and W. Reid, Course of Theoretical Physics: Fluid mechan- ics. Teoretičeskaja fizika, Pergamon Press, 1987.
- G. Ellis and M. Bruni, "Covariant and gauge invariant approach to cosmological density fluctuations," Phys.Rev., vol. D40, pp. 1804-1818, 1989.