Abundant and diverse Tetrahymena species living in the bladder traps of aquatic carnivorous Utricularia plants (original) (raw)

Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

PLOS Biology, 2006

The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance. Citation: Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, et al. (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4(9): e286.

PLoS BIOLOGY Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

2011

The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.

Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research

Nucleic Acids Research, 2006

We have developed a web-based resource (available at www.ciliate.org) for researchers studying the model ciliate organism Tetrahymena thermophila. Employing the underlying database structure and programming of the Saccharomyces Genome Database, the Tetrahymena Genome Database (TGD) integrates the wealth of knowledge generated by the Tetrahymena research community about genome structure, genes and gene products with the newly sequenced macronuclear genome determined by The Institute for Genomic Research (TIGR). TGD provides information curated from the literature about each published gene, including a standardized gene name, a link to the genomic locus in our graphical genome browser, gene product annotations utilizing the Gene Ontology, links to published literature about the gene and more. TGD also displays automatic annotations generated for the gene models predicted by TIGR. A variety of tools are available at TGD for searching the Tetrahymena genome, its literature and information about members of the research community.

Gene Network Landscape of the Ciliate Tetrahymena thermophila

PLOS One, 2011

Background: Genome-wide expression data of gene microarrays can be used to infer gene networks. At a cellular level, a gene network provides a picture of the modules in which genes are densely connected, and of the hub genes, which are highly connected with other genes. A gene network is useful to identify the genes involved in the same pathway, in a protein complex or that are co-regulated. In this study, we used different methods to find gene networks in the ciliate Tetrahymena thermophila, and describe some important properties of this network, such as modules and hubs.

Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila

BMC Genomics, 2009

Background Cytochrome P450 monooxygenases play key roles in the metabolism of a wide variety of substrates and they are closely associated with endocellular physiological processes or detoxification metabolism under environmental exposure. To date, however, none has been systematically characterized in the phylum Ciliophora. T. thermophila possess many advantages as a eukaryotic model organism and it exhibits rapid and sensitive responses to xenobiotics, making it an ideal model system to study the evolutionary and functional diversity of the P450 monooxygenase gene family. Results A total of 44 putative functional cytochrome P450 genes were identified and could be classified into 13 families and 21 sub-families according to standard nomenclature. The characteristics of both the conserved intron-exon organization and scaffold localization of tandem repeats within each P450 family clade suggested that the enlargement of T. thermophila P450 families probably resulted from recent separ...

Barcoding Tetrahymena: Discriminating Species and Identifying Unknowns Using the Cytochrome c Oxidase Subunit I (cox-1) Barcode

Protist, 2011

DNA barcoding using the mitochondrial cytochrome c oxidase subunit I (cox-1) gene has recently gained popularity as a tool for species identification of a variety of taxa. The primary objective of our research was to explore the efficacy of using cox-1 barcoding for species identification within the genus Tetrahymena. We first increased intraspecific sampling for Tetrahymena canadensis, Tetrahymena hegewischi, Tetrahymena pyriformis, Tetrahymena rostrata, Tetrahymena thermophila, and Tetrahymena tropicalis. Increased sampling efforts show that intraspecific sequence divergence is typically less than 1%, though it may be more in some species. The barcoding also showed that some strains might be misidentified or mislabeled. We also used cox-1 barcodes to provide species identifications for 51 unidentified environmental isolates, with a success rate of 98%. Thus, cox-1 barcoding is an invaluable tool for protistologists, especially when used in conjunction with morphological studies.

Phylogenetic positions of Uronychia transfuga and Diophrys appendiculata (Euplotida, Hypotrichia, Ciliophora) within hypotrichous ciliates inferred from the small subunit ribosomal RNA gene sequences

European Journal of Protistology, 2001

The small subunit rRNA (SSrRNA) genes were sequenced for the hypotrichous ciliates, Aspidisca steini and Euplotes vannus. These two genera form a monophyletic clade and branch first in the euplotid clade at a long level with strong bootstrap support in both distance matrix and maximum parsimony tree construction methods. The phylogenetic trees further suggest the postulated relationships among families within the order Euplotida that (1) the order Euplotida, represented by Uronychia, Diophrys, Euplotidium, Euplotes and Aspidisca, forms a paraphyletic group; (2) the families Euplotidae and Aspidiscidae, likely as a monophyletic clade, share a common ancestor; (3) two other related genera, Uronychia and Diophrys, which were usually placed in the family Uronychiidae, branch later and share closer relationship each other than they are to other euplotids. On the contrary, Euplotidium arenarium, placed in the family Gastrocirrhidae, might be more closely related to Uronychia-Diophrys than to the Aspidisca-Euplotes group.

Insights into an Extensively Fragmented Eukaryotic Genome: De Novo Genome Sequencing of the Multinuclear Ciliate Uroleptopsis citrina

Genome biology and evolution, 2018

Ciliated protists are a large group of single-celled eukaryotes with separate germline and somatic nuclei in each cell. The somatic genome is developed from the zygotic nucleus through a series of chromosomal rearrangements, including fragmentation, DNA elimination, de novo telomere addition, and DNA amplification. This unique feature makes them perfect models for research in genome biology and evolution. However, genomic research of ciliates has been limited to a few species, owing to problems with DNA contamination and obstacles in cultivation. Here, we introduce a method combining telomere-primer PCR amplification and high-throughput sequencing, which can reduce DNA contamination and obtain genomic data efficiently. Based on this method, we report a draft somatic genome of a multimacronuclear ciliate, Uroleptopsis citrina. 1) The telomeric sequence in U. citrina is confirmed to be C4A4C4A4C4 by directly blunt-end cloning. 2) Genomic analysis of the resulting chromosomes shows a &...

Tetrahymenaas a Unicellular Model Eukaryote: Genetic and Genomic Tools

Genetics, 2016

Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena’s utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice.