Accelerated Angiogenic Host Tissue Response to Poly(L-Lactide-co-Glycolide) Scaffolds by Vitalization with Osteoblast-like Cells (original) (raw)
Related papers
Annals of Surgery, 2008
Objective: We analyzed, in vivo, whether the establishment of blood supply to implanted scaffolds can be accelerated by inosculation of an in situ-preformed microvascular network with the host microvasculature. Background: A rapid vascularization is crucial for the survival of scaffold-based transplanted tissue constructs. Methods: Poly-lactic-glycolic acid scaffolds were implanted into the flank of balb/c or green fluorescent protein (GFP)-transgenic mice for 20 days to create in situ a new microvascular network within the scaffolds. The prevascularized scaffolds were then transferred into the dorsal skinfold chamber of isogeneic recipient mice. Nonvascularized poly-lactic-glycolic acid scaffolds served as controls. Vascularization, blood perfusion, and cell survival of the implants were analyzed over 14 days using intravital fluorescence microscopy, histology, and immunohistochemistry. Results: Our results demonstrate that establishment of blood perfusion of prevascularized scaffolds is significantly accelerated and improved (136.7 Ϯ 23.2 pl/s) when compared with controls (6.9 Ϯ 1.9 pl/s), because the in situ-preformed microvessels were reperfused by forming interconnections to the host microvasculature. Apoptotic cell death within the implants was found only during the first 3 to 6 days after scaffold implantation during lack of blood perfusion, but not during the further 14-day observation period. Conclusions: Inosculation of in situ-preformed functional blood vessels represents a promising approach to improve the blood supply to implanted tissue constructs.
Clinical Hemorheology and Microcirculation, 2011
Cost effective and safely to apply tissue engineered constructs of big volume bone transplants for the reconstruction of critical sized defects (CSD) are still not available. Key problems with synthetic scaffold materials are shrinkage and fast degradation of the scaffolds, a lack of blood supply and nutrition in the central scaffold volume and the absent or the scarce development of bone tissue along the scaffold to bridge the bone defect. The use of composite scaffolds made of biopolymers like polylactidglycolid acid (PLGA) coated and loaded with calcium phosphates (CaP) revealed promising therapeutical options for the regeneration of critical sized bone defects. In this study interconnectively macroporous PLGA scaffolds loaded with microporous and coated with nanoporous calcium phosphates were either seeded in fixed bed bioreactors with allogenic osteogenically induced mesenchymal stem cells and implanted or implanted unseeded into critical sized femoral bone defects.
Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice
Biomaterials, 2006
For tissue engineering, scaffolds should be biocompatible and promote neovascularization. Because little is known on those specific properties, we herein studied in vivo the host angiogenic and inflammatory response after implantation of commonly used scaffold materials. Porous poly(L-lactide-co-glycolide) (PLGA) and collagen-chitosan-hydroxyapatite hydrogel scaffolds were implanted into dorsal skinfold chambers of balb/c mice. Additional animals received cortical bone as an isogeneic, biological implant, while chambers of animals without implants served as controls. Angiogenesis and neovascularization as well as leukocyte-endothelial cell interaction and microvascular permeability were analyzed over 14 day using intravital fluorescence microscopy. PLGA scaffolds showed a slight increase in leukocyte recruitment compared to controls. This was associated with an elevation of microvascular permeability, which was comparable to that observed in isogeneic bone tissue. Of interest, PLGA induced a marked angiogenic response, revealing a density of newly formed capillaries almost similar to that observed in bone implants. Histology showed infiltration of macrophages, probably indicating resorption of the biomaterial. In contrast, hydrogel scaffolds induced a severe inflammation, as indicated by an $15-fold increase of leukocyte-endothelial cell interaction and a marked elevation of microvascular permeability. This was associated by induction of apoptotic cell death within the surrounding tissue and a complete lack of ingrowth of newly formed microvessels. Histology confirmed adequate engraftment of PLGA and isogeneic bone but not hydrogel within the host tissue. PLGA scaffolds show a better biocompatibility than hydrogel scaffolds and promote vascular ingrowth, guaranteeing adequate engraftment within the host tissue. r
Biomaterials, 2011
Successful cell-based tissue engineering requires a rapid and thorough vascularization in order to ensure long-term implant survival and tissue integration. The vascularization of a scaffold is a complex process, and is modulated by the presence of transplanted cells, exogenous and endogenous signaling proteins, and the host tissue reaction, among other influencing factors. This paper presents evidence for the significance of pre-seeded osteoblasts for the in vivo vascularization of a biodegradable scaffold. Human osteoblasts, cultured on silk fibroin micronets in vitro, migrated throughout the interconnected pores of the scaffold and produced extensive bone matrix. When these constructs were implanted in SCID mice, a rapid and thorough vascularization of the scaffold by the host blood capillaries occurred. This profound response was not seen for the silk fibroin scaffold alone. Moreover, when the pre-cultivation time of human osteoblasts was reduced from 14 days to only 24 h, the significant effect these cells exerted on vascularization rate in vivo was still detectable. From these studies, we conclude that matrix and soluble factors produced by osteoblasts can serve to instruct host endothelial cells to migrate, proliferate, and initiate the process of scaffold vascularization. This finding represents a potential paradigm shift for the field of tissue engineering, especially in bone, as traditional strategies to enhance scaffold vascularization have focused on endovascular cells and regarded osteoblasts primarily as cell targets for mineralization. In addition, the migration of host macrophages and multinucleated giant cells into the scaffold was also found to influence the vascularization of the biomaterial. Therefore, the robust effect on scaffold vascularization seen by pre-culturing with osteoblasts appears to occur in concert with the proangiogenic stimuli arising from host immune cells.
Biomaterials, 2008
The capacity to deliver, temporally, bioactive growth factors in combination with appropriate progenitor and stem cells to sites of tissue regeneration promoting angiogenesis and osteogenesis offers therapeutic opportunities in regenerative medicine. We have examined the bone regenerative potential of encapsulated vascular endothelial growth factor (VEGF 165 ) biodegradable poly(DL-lactic acid) (PLA) scaffolds created using supercritical CO 2 fluid technology to encapsulate and release solvent-sensitive and thermolabile growth factors in combination with human bone marrow stromal cells (HBMSC) implanted in a mouse femur segmental defect (5 mm) for 4 weeks. HBMSC seeded on VEGF encapsulated PLA scaffolds showed significant bone regeneration in the femur segmental defect compared to the scaffold alone and scaffold seeded with HBMSC as analysed by indices of increased bone volume (BV mm 3 ), trabecular number (Tb.N/mm) and reduced trabecular separation (Tb.Sp. mm) in the defect region using micro-computed tomography. Histological examination confirmed significant new bone matrix in the HBMSC seeded VEGF encapsulated scaffold group as evidenced by Sirius red/alcian blue and Goldner's trichrome staining and type I collagen immunocytochemistry expression in comparison to the other groups. These studies demonstrate the ability to deliver, temporally, a combination of VEGF released from scaffolds with seeded HBMSC to sites of bone defects, results in enhanced regeneration of a bone defect.
Biomaterials, 2009
In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF (vascular endothelial growth factor) in fibrin gel-assays in vitro. Co-culture of OEC with human primary osteoblasts (pOB) on SPCL, induced an angiogenic activation of OEC towards microvessel-like structures achieved without additional supplementation with angiogenic growth factors. Effects of co-cultures with pOB on the vascularization process by OEC in vivo were tested by subcutaneous implantation of Matrigel Ò plugs containing both, OEC and pOB, and resulted in OEC-derived blood vessels integrated into the host tissue and anastomosed to the vascular supply. In addition, morphometric analysis of the vascularization process by OEC indicated a better performance of OEC in the co-cultures with primary osteoblasts compared to monocultures of OEC. The contribution of OEC to vascular structures and the beneficial effect of the co-culture with primary human osteoblasts on the vascularization in vivo was additionally proven by subcutaneous implantation of pre-cellularized and pre-cultured SPCL constructs. OEC contributed to the vascular structures, by generating autogenic vessels or by incorporation into chimeric vessels consisting of both, human and mouse endothelial cells. The current data highlight the vasculogenic potential of OEC for bone tissue engineering applications and indicate a beneficial influence of constructs including both osteoblasts and endothelial cells for vascularization strategies.
Journal of Craniofacial Surgery, 2012
Prevascularization of engineered bony constructs can potentially improve in vivo viability. However, the effect of endothelial cells on osteogenesis is unknown when placed in poly(D,L-lactide) (PLA) scaffolds alone. Adipose-derived stem cells (ASCs) have the ability to differentiate into both osteoblasts and endothelial cells by culture in specific media. We hypothesized that ASC-derived endothelial cells would improve vascularity with minimal contribution to bone formation when placed in scaffold alone. ASCs were successfully differentiated into endothelial cells (ASC-Endo) and osteoblasts (ASC-Osteo) using media supplemented with vascular endothelial growth factor and bone morphogenic protein 2, respectively. Tissue-engineered constructs were created with PLA matrices containing no cells (control), undifferentiated ASCs (ASCs), osteogenic-differentiated ASCs (ASC-Osteo), or endothelial differentiated ASCs (ASC-Endo), and these constructs were evaluated in critical-size Lewis rat calvarial defect model (n = 34). Eight weeks after implantation, the bone volume and microvessel population of bony constructs were evaluated by microYcomputed tomography analysis and histologic staining. Bone volumes for ASCs and ASC-Osteo constructs, 0.7 and 0.91 mm 3 , respectively, were statistically greater than that for ASC-Endo, 0.28 mm 3 (P G 0.05). There was no statistical difference between the PLA control (0.5 mm 3 ) and ASC-Endo (0.28 mm 3 ) constructs in bone formation. The percent area of microvessels within constructs was highest in the ASC-Endo group, although it did not reach statistical significance (0.065). Prevascularization of PLA scaffold with ASC-Endo cells will not increase bone formation by itself but may be used as a cell source for improving vascularization and potentially improving existing osteoblast function.
Characterization of a prevascularized biomimetic tissue engineered scaffold for bone regeneration
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019
Significant bone loss due to disease or severe injury can result in the need for a bone graft, with over 500,000 procedures occurring each year in the United States. However, the current standards for grafting, autografts and allografts, can result in increased patient morbidity or a high rate of failure respectively. An ideal alternative would be a biodegradable tissue engineered graft that fulfills the function of bone while promoting the growth of new bone tissue. We developed a prevascularized tissue engineered scaffold of electrospun biodegradable polymers PLLA and PDLA reinforced with hydroxyapatite, a mineral similar to that found in bone. A composite design was utilized to mimic the structure and function of human trabecular and cortical bone. These scaffolds were characterized mechanically and in vitro to determine osteoinductive and angioinductive properties. It was observed that further reinforcement is necessary for the scaffolds to mechanically match bone, but the scaffolds are successful at inducing the differentiation of mesenchymal stem cells into mature bone cells and vascular endothelial cells. Prevascularization was seen to have a positive effect on angiogenesis and cellular metabolic activity, critical factors for the integration of a graft.
The major challenge for biomaterials in bone regeneration is a good integration with the host tissue, in which a proper vasculatization is crucial. Calcium phosphate (CP) materials have gain importance in bone regeneration since it has been proved that they stimulate the formation of bone. However, little is known about their angiogenic potential. Recent findings in our group suggest that Ca 2+ have a role in angiogenesis 1,2,3. In this study we developed different Ca 2+ releasing scaffolds by combining different sol-gel CP degradable nanoparticles (containing only Ca and P) with electrospun polylactic acid (PLA) nanofibers. Scaffolds were seeded with human mesenchymal stem cells (hMSCs) and cultured in both regular (RM) and osteogenic (OM) media. Cell proliferation, Alkaline Phosphatase (ALP) activity, VEGF synthesis and L-lactate release were assessed. Angiogenesis was examined in vitro by HUVEC tube formation and in vivo by using the chick choriallantoic membrane (CAM) angiogenic model. Scaffolds showed a long term (up to 20 days) Ca 2+ release in both culture media. The presence of the particles in the scaffolds enhanced hMSCs adhesion and increased their proliferation as well as the ALP activity in OM. hMSCs substantially increased their production of L-lactate and VEGF when seeded on the scaffolds containing the particles in RM. However, this increase was minimized when cultured in OM. HUVEC showed an enhancement in tube formation when cultured in the conditioned media obtained from culturing the hMSCs on the scaffolds. This time, no differences were found between the scaffolds with or without particles. Finally, the CAM assay showed a significant increase in the formation of new blood vessels for the scaffolds containing the particles. Their angiogenic response was similar to a VEGF loaded PLA fibers used as a positive control. We demonstrate that the presence of the Ca 2+ releasing particles enhanced several angiogenic parameters. However, some of these parameters were significantly reduced in OM due to the osteogenic differentiation of hMSCs.
Tissue Engineering Part A, 2013
The ideal bone tissue-engineered (TE) construct remains to be found, although daily discoveries significantly contribute to improvements in the field and certainly have valuable long-term outcomes. In this work, different TE elements, aiming at bone TE applications, were assembled and its effect on the expression of several vascularization/angiogenesis mediators analyzed. Starch/polycaprolactone (SPCL) scaffolds, obtained by two different methodologies, were combined with fibrin sealant (Baxter Ò), human adipose-derived stem cells (hASCs), and growth factors (vascular endothelial growth factor [VEGF] or fibroblast growth factor-2 [FGF-2]), and implanted in vascular endothelial growth factor receptor-2 (VEGFR2)-luc transgenic mice. The expression of VEGFR2 along the implantation of the designed constructs was followed using a luminescence device (Xenogen Ò) and after 2 weeks, the explants were retrieved to perform histological analysis and reverse transcriptase-polymerase chain reaction for vascularization (VEGF and VEGFR1) and inflammatory (tumor necrosis factor-alpha, interleukin-4, and interferon-gamma) markers. It was showed that SPCL scaffolds obtained by wet spinning and by fiber bonding constitute an adequate support for hASCs. The assembled TE constructs composed by fibrin sealant, hASCs, VEGF, and FGF-2 induce only a mild inflammatory reaction after 2 weeks of implantation. Additionally, the release of VEGF and FGF-2 from the constructs enhanced the expression of VEGFR2 and other important mediators in neovascularization (VEGF and VEGFR1). These results indicate the potential of VEGF or FGF-2 within a bone TE construct composed by wet-spun SPCL, fibrin sealant, and hASCs in promoting the vascularization of newly formed tissue.