The NUMEN Project: An Update of the Facility Toward the Future Experimental Campaigns (original) (raw)
Related papers
The nuclear matrix elements of 0νββdecay and the NUMEN project at INFN-LNS
EPJ Web of Conferences, 2016
The goal of NUMEN project is to access experimentally driven information on Nuclear Matrix Elements (NME) involved in the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. The knowledge of the nuclear matrix elements is crucial to infer the neutrino average masses from the possible measurement of the half-life of 0νββ decay and to compare experiments on different isotopes. In particular, the (18 O, 18 Ne) and (20 Ne, 20 O) reactions are performed as tools for β + β + and ββdecays, respectively. The experiments are performed at INFN-Laboratory Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron (CS) to accelerate the beams and the MAGNEX magnetic spectrometer to detect the reaction products. The measured cross sections are very low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield of about two orders of magnitude. To this purpose, frontier technologies are going to be developed for both the accelerator and the detection systems. In parallel, advanced theoretical models will be developed to extract the nuclear structure information from the measured cross sections.
2015
An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross sections measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy)
New results from the NUMEN project
Proceedings of Neutrino Oscillation Workshop — PoS(NOW2018), 2019
NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (18 O, 18 Ne) and (20 Ne, 20 O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the halflife of 0νββ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beams and the MAGNEX magnetic spectrometer at INFN Laboratori Nazionali del Sud in Catania (Italy). The measured cross sections are extremely low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to increase the experimental yield of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest.
The nuclear matrix elements of 0vββ decay and the NUMEN project at INFN-LNS
Journal of Physics: Conference Series, 2016
An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross section measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy). However, a major upgrade is foreseen for the INFN-LNS research infrastructure to cope with beam currents as high as several pμA required by the project.
The role of nuclear reactions in the problem of0νββdecay and the NUMEN project at INFN-LNS
Journal of Physics: Conference Series, 2015
An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross sections of double charge exchange reactions is proposed. The basic point is the coincidence of the initial and final state wave-functions in the two classes of processes and the similarity of the transition operators, which in both cases present a superposition of Fermi, Gamow-Teller and rank-two tensor components with a relevant implicit momentum transfer. First pioneering experimental results obtained at the INFN-LNS laboratory for the 40 Ca(18 O, 18 Ne) 40 Ar reaction at 270 MeV, give encouraging indication on the capability of the proposed technique to access relevant quantitative information. A key aspect of the project is the use of the K800 Superconducting Cyclotron (CS) for the acceleration of the required high resolution and low emittance heavyion beams and of the MAGNEX large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the high mass, angular and energy resolution required even at very low cross section. The LNS setup is today an ideal one for this research even in a worldwide perspective. However a main limitation on the beam current delivered by the accelerator and the maximum rate accepted by the MAGNEX focal plane detector must be sensibly overcome in order to systematically provide accurate numbers to the neutrino physics community in all the studied cases. The upgrade of the LNS facilities in this view is part of this project.
The NUMEN project @ LNS: Status and perspectives
Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello
The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. Particular interest is given to the (18 O, 18 Ne) and (20 Ne, 20 O) reactions as tools for + + and-decays, respectively. First evidence about the possibility to get quantitative information about NME from experiments is found for both kind of reactions. In the experiments, performed at INFN-Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction products are detected by the MAGNEX magnetic spectrometer. The measured cross sections are challengingly low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to significantly increase the experimental yield, thus making feasible a systematic study of all the cases of interest. Frontiers technologies are going to be developed, to this purpose, for the accelerator and the detection systems. In parallel, advanced theoretical models are developed aiming at extracting the nuclear structure information from the measured cross sections.
Recent experimental activity on heavy-ion induced reactions within the NUMEN project
EPJ Web of Conferences
The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The strategies adopted in the experimental campaigns performed at INFN - Laboratori Nazionali del Sud are briefly described, emphasizing the advantages of the multi-channel approach to nuclear reaction data analysis.
The NUMEN Heavy Ion Multidetector for a Complementary Approach to the Neutrinoless Double Beta Decay
Universe
Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper wi...
Recent results on heavy-ion direct reactions of interest for 0νββ decay at INFN - LNS
Journal of Physics: Conference Series, 2020
Neutrinoless double beta decay of nuclei, if observed, would have important implications on fundamental physics. In particular it would give access to the effective neutrino mass. In order to extract such information from 0νββ decay half-life measurements, the knowledge of the Nuclear Matrix Elements (NME) is of utmost importance. In this context the NUMEN and the NURE projects aim to extract information on the NME by measuring cross sections of Double Charge Exchange reactions in selected systems which are expected to spontaneously decay via 0νββ. In this work an overview of the experimental challenges that NUMEN is facing in order to perform the experiments with accelerated beams and the research and development activity for the planned upgrade of the INFN-LNS facilities is reported.