A computational approach to parameter identification of spatially distributed nonlinear systems with unknown initial conditions (original) (raw)
2014
Abstract
In this paper, a high-precision algorithm for parameter identification of nonlinear multivariable dynamic systems is proposed. The proposed computational approach is based on the following assumptions: a) system is nonlinearly parameterized by a vector of unknown system parameters; b) only partial measurement of system state is available; c) there are no state observers; d) initial conditions are unknown except for measurable system states. The identification problem is formulated as a continuous dynamic optimization problem which is discretized by higher-order Adams method and numerically solved by a backward-in-time recurrent algorithm which is similar to the backpropagation-through-time (BPTT) algorithm. The proposed algorithm is especially effective for identification of homogenous spatially distributed nonlinear systems what is demonstrated on the parameter identification of a multi-degree-of-freedom torsional system with nonlinearly parameterized elastic forces, unknown initial velocities and positions measurement only.
Gyula Mester hasn't uploaded this paper.
Let Gyula know you want this paper to be uploaded.
Ask for this paper to be uploaded.