Privacy preserving classification over differentially private data (original) (raw)

2020, WIREs Data Mining and Knowledge Discovery

Privacy preserving data classification is an important research area in data mining field. The goal of a privacy preserving classification algorithm is to protect the sensitive information as much as possible, while providing satisfactory classification accuracy. Differential privacy is a strong privacy guarantee that enables privacy of sensitive data stored in a database by determining the ratio of sensitive information leakage with respect to an ɛ parameter. In this study, our aim is to investigate the classification performance of the state‐of‐the‐art classification algorithms such as C4.5, Naïve Bayes, One Rule, Bayesian Networks, PART, Ripper, K*, IBk, and Random tree for performing privacy preserving classification. To preserve privacy of the data to be classified, we applied input perturbation technique coming from differential privacy, and observed the relationship between the ɛ parameter values and accuracy of the classifiers. To our best knowledge, this article is the firs...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact